Regression of postprandial cardiac hypertrophy in burmese pythons is mediated by FoxO1
- PMID: 39352930
- PMCID: PMC11474088
- DOI: 10.1073/pnas.2408719121
Regression of postprandial cardiac hypertrophy in burmese pythons is mediated by FoxO1
Abstract
As ambush-hunting predators that consume large prey after long intervals of fasting, Burmese pythons evolved with unique adaptations for modulating organ structure and function. Among these is cardiac hypertrophy that develops within three days following a meal (Andersen et al., 2005, Secor, 2008), which we previously showed was initiated by circulating growth factors (Riquelme et al., 2011). Postprandial cardiac hypertrophy in pythons also rapidly regresses with subsequent fasting (Secor, 2008); however, the molecular mechanisms that regulate the dynamic cardiac remodeling in pythons during digestion are largely unknown. In this study, we employed a multiomics approach coupled with targeted molecular analyses to examine remodeling of the python ventricular transcriptome and proteome throughout digestion. We found that forkhead box protein O1 (FoxO1) signaling was suppressed prior to hypertrophy development and then activated during regression, which coincided with decreased and then increased expression, respectively, of FoxO1 transcriptional targets involved in proteolysis. To define the molecular mechanistic role of FoxO1 in hypertrophy regression, we used cultured mammalian cardiomyocytes treated with postfed python plasma. Hypertrophy regression both in pythons and in vitro coincided with activation of FoxO1-dependent autophagy; however, the introduction of a FoxO1-specific inhibitor prevented both regression of cell size and autophagy activation. Finally, to determine whether FoxO1 activation could induce regression, we generated an adenovirus expressing a constitutively active FoxO1. FoxO1 activation was sufficient to prevent and reverse postfed plasma-induced hypertrophy, which was partially prevented by autophagy inhibition. Our results indicate that modulation of FoxO1 activity contributes to the dynamic ventricular remodeling in postprandial Burmese pythons.
Keywords: Burmese python; FoxO1; autophagy; cardiac hypertrophy; hypertrophy regression.
Conflict of interest statement
Competing interests statement:L.A.L. is a Co-Founder of MyoKardia, acquired by Bristol Myers Squibb. MyoKardia and Bristol Myers Squibb were not involved in this study. The other authors have no competing interests to disclose.
Figures
Update of
-
A Conserved Mechanism of Cardiac Hypertrophy Regression through FoxO1.bioRxiv [Preprint]. 2024 Jan 28:2024.01.27.577585. doi: 10.1101/2024.01.27.577585. bioRxiv. 2024. Update in: Proc Natl Acad Sci U S A. 2024 Oct 8;121(41):e2408719121. doi: 10.1073/pnas.2408719121. PMID: 38328143 Free PMC article. Updated. Preprint.
References
-
- Scott G. R., Elevated performance: The unique physiology of birds that fly at high altitudes. J. Exp. Biol. 214, 2455–2462 (2011). - PubMed
MeSH terms
Substances
Grants and funding
LinkOut - more resources
Full Text Sources
Molecular Biology Databases
Research Materials
Miscellaneous
