Extreme Electron-Photon Interaction in Disordered Perovskites
- PMID: 39356054
- PMCID: PMC11792048
- DOI: 10.1002/advs.202405709
Extreme Electron-Photon Interaction in Disordered Perovskites
Abstract
The interaction of light with solids can be dramatically enhanced owing to electron-photon momentum matching. This mechanism manifests when light scattering from nanometer-sized clusters including a specific case of self-assembled nanostructures that form a long-range translational order but local disorder (crystal-liquid duality). In this paper, a new strategy based on both cases for the light-matter-interaction enhancement in a direct bandgap semiconductor - lead halide perovskite CsPbBr3 - by using electric pulse-driven structural disorder, is addressed. The disordered state allows the generation of confined photons, and the formation of an electronic continuum of static/dynamic defect states across the forbidden gap (Urbach bridge). Both mechanisms underlie photon-momentum-enabled electronic Raman scattering (ERS) and single-photon anti-Stokes photoluminescence (PL) under sub-band pump. PL/ERS blinking is discussed to be associated with thermal fluctuations of cross-linked [PbBr6]4- octahedra. Time-delayed synchronization of PL/ERS blinking causes enhanced spontaneous emission at room temperature. These findings indicate the role of photon momentum in enhanced light-matter interactions in disordered and nanostructured solids.
Keywords: Raman blinking; crystal‐liquid duality; disordered perovskite; electronic Raman scattering; electron‐photon interaction; near‐field photon momentum; photoluminescence blinking.
© 2024 The Author(s). Advanced Science published by Wiley‐VCH GmbH.
Conflict of interest statement
The authors declare no conflict of interest.
Figures




Similar articles
-
Photon-Momentum-Enabled Electronic Raman Scattering in Silicon Glass.ACS Nano. 2024 Apr 2;18(13):9557-9565. doi: 10.1021/acsnano.3c12666. Epub 2024 Mar 4. ACS Nano. 2024. PMID: 38437629
-
Photon Momentum Enabled Light Absorption in Silicon.ACS Nano. 2024 Oct 1;18(39):26532-26540. doi: 10.1021/acsnano.4c02656. Epub 2024 Aug 22. ACS Nano. 2024. PMID: 39172118
-
Emission Enhancement and Intermittency in Polycrystalline Organolead Halide Perovskite Films.Molecules. 2016 Aug 18;21(8):1081. doi: 10.3390/molecules21081081. Molecules. 2016. PMID: 27548128 Free PMC article.
-
Room Temperature Single-Photon Emission from Individual Perovskite Quantum Dots.ACS Nano. 2015 Oct 27;9(10):10386-93. doi: 10.1021/acsnano.5b04584. Epub 2015 Sep 8. ACS Nano. 2015. PMID: 26312994
-
Blinking Mechanisms and Intrinsic Quantum-Confined Stark Effect in Single Methylammonium Lead Bromide Perovskite Quantum Dots.Small. 2020 Dec;16(51):e2005435. doi: 10.1002/smll.202005435. Epub 2020 Nov 25. Small. 2020. PMID: 33236844
Cited by
-
Heat generation in spatially confined solids through electronic light scattering.Nanophotonics. 2025 Jun 19;14(14):2411-2418. doi: 10.1515/nanoph-2025-0118. eCollection 2025 Jul. Nanophotonics. 2025. PMID: 40687572 Free PMC article.
References
-
- Yaffe O., Guo Y., Tan L. Z., Egger D. A., Hull T., Stoumpos C. C., Zheng F., Heinz T. F., Kronik L., Kanatzidis M. G., Owen J. S., Rappe A. M., Pimenta M. A., Brus L. E., Phys. Rev. Lett. 2017, 118, 136001. - PubMed
-
- Vugmeister B. E., Yacoby Y., Toulouse J., Rabitz H., Phys. Rev. B. 1999, 59, 8602.
-
- Kharintsev S. S., Battalova E. I., Noskov A. I., Merham J., Potma E. O., Fishman D. A., ACS Nano. 2024, 18, 9557. - PubMed
-
- Cohen A. V., Egger D. A., Rappe A. M., Kronik L., J. Phys. Chem. Lett. 2019, 10, 4490. - PubMed
-
- Wang B., Chu W., Wu Y., Casanova D., Saidi W. A., Prezhdo O. V., J. Phys. Chem. Lett. 2022, 13, 5946. - PubMed
LinkOut - more resources
Full Text Sources
Miscellaneous