Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2024 Oct 2;7(1):1240.
doi: 10.1038/s42003-024-06937-5.

The biogeography of the Amazonian tree flora

Bruno Garcia Luize  1 Hanna Tuomisto  2   3 Robin Ekelschot  4 Kyle G Dexter  5   6 Iêda L do Amaral  7 Luiz de Souza Coelho  7 Francisca Dionízia de Almeida Matos  7 Diógenes de Andrade Lima Filho  7 Rafael P Salomão  8   9 Florian Wittmann  10   11 Carolina V Castilho  12 Marcelo de Jesus Veiga Carim  13 Juan Ernesto Guevara  14 Oliver L Phillips  15 William E Magnusson  16 Daniel Sabatier  17 Juan David Cardenas Revilla  7 Jean-François Molino  17 Mariana Victória Irume  7 Maria Pires Martins  7 José Renan da Silva Guimarães  18 José Ferreira Ramos  7 Olaf S Bánki  4 Maria Teresa Fernandez Piedade  11 Dairon Cárdenas López  19 Nigel C A Pitman  20 Layon O Demarchi  11 Jochen Schöngart  11 Evlyn Márcia Moraes de Leão Novo  21 Percy Núñez Vargas  22 Thiago Sanna Freire Silva  23 Eduardo Martins Venticinque  24 Angelo Gilberto Manzatto  25 Neidiane Farias Costa Reis  26 John Terborgh  27   28 Katia Regina Casula  26 Euridice N Honorio Coronado  29   30 Abel Monteagudo Mendoza  22   31 Juan Carlos Montero  7   32 Flávia R C Costa  16 Ted R Feldpausch  15   33 Adriano Costa Quaresma  11 Nicolás Castaño Arboleda  19 Charles Eugene Zartman  7 Timothy J Killeen  34 Beatriz S Marimon  35 Ben Hur Marimon  35 Rodolfo Vasquez  31 Bonifacio Mostacedo  36 Rafael L Assis  37 Chris Baraloto  38 Dário Dantas do Amaral  9 Julien Engel  17   38 Pascal Petronelli  39 Hernán Castellanos  40 Marcelo Brilhante de Medeiros  41 Marcelo Fragomeni Simon  41 Ana Andrade  42 José Luís Camargo  42 William F Laurance  28 Susan G W Laurance  28 Lorena Maniguaje Rincón  7 Juliana Schietti  7 Thaiane R Sousa  43 Gisele Biem Mori  11 Emanuelle de Sousa Farias  44 Maria Aparecida Lopes  45 José Leonardo Lima Magalhães  46   47 Henrique Eduardo Mendonça Nascimento  7 Helder Lima de Queiroz  48 Caroline C Vasconcelos  49 Gerardo A Aymard C  50 Roel Brienen  15 Pablo R Stevenson  51 Alejandro Araujo-Murakami  52 Bruno Barçante Ladvocat Cintra  53 Tim R Baker  15 Yuri Oliveira Feitosa  49 Hugo F Mogollón  54 Joost F Duivenvoorden  55 Carlos A Peres  56 Miles R Silman  57 Leandro Valle Ferreira  9 José Rafael Lozada  58 James A Comiskey  59   60 José Julio de Toledo  61 Gabriel Damasco  62 Nállarett Dávila  1 Freddie C Draper  63 Roosevelt García-Villacorta  64   65 Aline Lopes  66 Alberto Vicentini  16 Fernando Cornejo Valverde  67 Alfonso Alonso  60 Luzmila Arroyo  52 Francisco Dallmeier  60 Vitor H F Gomes  68   69 Eliana M Jimenez  70 David Neill  71 Maria Cristina Peñuela Mora  72 Janaína Costa Noronha  73 Daniel P P de Aguiar  74   75 Flávia Rodrigues Barbosa  73 Yennie K Bredin  76 Rainiellen de Sá Carpanedo  73 Fernanda Antunes Carvalho  16   77 Fernanda Coelho de Souza  15   16 Kenneth J Feeley  78   79 Rogerio Gribel  7 Torbjørn Haugaasen  76 Joseph E Hawes  76 Marcelo Petratti Pansonato  7   80 John J Pipoly 3rd  81 Marcos Ríos Paredes  82 Domingos de Jesus Rodrigues  73 Jos Barlow  83 Erika Berenguer  83   84 Izaias Brasil da Silva  85 Maria Julia Ferreira  86 Joice Ferreira  47 Paul V A Fine  87 Marcelino Carneiro Guedes  88 Carolina Levis  89 Juan Carlos Licona  32 Boris Eduardo Villa Zegarra  90 Vincent Antoine Vos  91 Carlos Cerón  92 Flávia Machado Durgante  10   11 Émile Fonty  17   93 Terry W Henkel  94 John Ethan Householder  10 Isau Huamantupa-Chuquimaco  95 Marcos Silveira  96 Juliana Stropp  97 Raquel Thomas  98 Doug Daly  99 William Milliken  100 Guido Pardo Molina  91 Toby Pennington  6   33 Ima Célia Guimarães Vieira  9 Bianca Weiss Albuquerque  11 Wegliane Campelo  61 Alfredo Fuentes  101   102 Bente Klitgaard  103 José Luis Marcelo Pena  104 J Sebastián Tello  101 Corine Vriesendorp  20 Jerome Chave  105 Anthony Di Fiore  106   107 Renato Richard Hilário  61 Luciana de Oliveira Pereira  33 Juan Fernando Phillips  108 Gonzalo Rivas-Torres  107   109 Tinde R van Andel  4   110 Patricio von Hildebrand  111 William Balee  112 Edelcilio Marques Barbosa  7 Luiz Carlos de Matos Bonates  7 Hilda Paulette Dávila Doza  82 Ricardo Zárate Gómez  113 Therany Gonzales  114 George Pepe Gallardo Gonzales  82 Bruce Hoffman  115 André Braga Junqueira  116 Yadvinder Malhi  84 Ires Paula de Andrade Miranda  7 Linder Felipe Mozombite Pinto  82 Adriana Prieto  117 Agustín Rudas  117 Ademir R Ruschel  47 Natalino Silva  118 César I A Vela  119 Stanford Zent  120 Egleé L Zent  120 María José Endara  14 Angela Cano  51   121 Yrma Andreina Carrero Márquez  122 Diego F Correa  51   123 Janaina Barbosa Pedrosa Costa  88 Bernardo Monteiro Flores  89 David Galbraith  15 Milena Holmgren  124 Michelle Kalamandeen  125 Guilherme Lobo  126 Luis Torres Montenegro  127 Marcelo Trindade Nascimento  128 Alexandre A Oliveira  80 Maihyra Marina Pombo  7 Hirma Ramirez-Angulo  129 Maira Rocha  11 Veridiana Vizoni Scudeller  130 Maria Natalia Umaña  131 Geertje van der Heijden  132 Emilio Vilanova Torre  129   133 Tony Mori Vargas  134 Manuel Augusto Ahuite Reategui  135 Cláudia Baider  80   136 Henrik Balslev  137 Sasha Cárdenas  51 Luisa Fernanda Casas  51 William Farfan-Rios  22   57 Cid Ferreira  7 Reynaldo Linares-Palomino  60 Casimiro Mendoza  138   139 Italo Mesones  87 Germaine Alexander Parada  52 Armando Torres-Lezama  129 Ligia Estela Urrego Giraldo  140 Daniel Villarroel  52   141 Roderick Zagt  142 Miguel N Alexiades  143 Edmar Almeida de Oliveira  35 Riley P Fortier  78 Karina Garcia-Cabrera  57 Lionel Hernandez  40 Walter Palacios Cuenca  144 Susamar Pansini  26 Daniela Pauletto  145 Freddy Ramirez Arevalo  134 Adeilza Felipe Sampaio  26 Elvis H Valderrama Sandoval  134   146 Luis Valenzuela Gamarra  31 Marina Hirota  1   147 Clarisse Palma-Silva  1 Hans Ter Steege  148   149
Affiliations

The biogeography of the Amazonian tree flora

Bruno Garcia Luize et al. Commun Biol. .

Abstract

We describe the geographical variation in tree species composition across Amazonian forests and show how environmental conditions are associated with species turnover. Our analyses are based on 2023 forest inventory plots (1 ha) that provide abundance data for a total of 5188 tree species. Within-plot species composition reflected both local environmental conditions (especially soil nutrients and hydrology) and geographical regions. A broader-scale view of species turnover was obtained by interpolating the relative tree species abundances over Amazonia into 47,441 0.1-degree grid cells. Two main dimensions of spatial change in tree species composition were identified. The first was a gradient between western Amazonia at the Andean forelands (with young geology and relatively nutrient-rich soils) and central-eastern Amazonia associated with the Guiana and Brazilian Shields (with more ancient geology and poor soils). The second gradient was between the wet forests of the northwest and the drier forests in southern Amazonia. Isolines linking cells of similar composition crossed major Amazonian rivers, suggesting that tree species distributions are not limited by rivers. Even though some areas of relatively sharp species turnover were identified, mostly the tree species composition changed gradually over large extents, which does not support delimiting clear discrete biogeographic regions within Amazonia.

PubMed Disclaimer

Conflict of interest statement

The authors declare no competing interests.

Figures

Fig. 1
Fig. 1. Variation in composition and relative abundance of 5188 tree species in 2023 forest-inventory plots (1 ha) across Amazonian forests.
Ordination biplots showing the two first principal components with inventory plots coloured by (a) ecological forest categories based on hydrology and soil characteristics and (b) geographic regions. a Ecological categories: VA, Várzea forests; SW, swamp forests; IG, igapó forests; PZ, white-sand (podzol) forests; TFGS, terra-firme on the Guiana Shield; TFBS terra-firme on the Brazilian Shield, TFPB terra-firme on the Pebas sedimentary basin. b Geographical regions: CA Central Amazonia, EA Eastern Amazonia, SA Southern Amazonia, GS Guiana Shield, NWA Northwestern Amazonia, SWA Southwestern Amazonia. Arrows indicate vectors constructed with envfit() for 14 environmental predictors: Flooded flooding vs. non-flooding terrains, WTD water table depth, Temp_avg average annual temperature, MCWD maximum climatological water deficit), Annal_ppt Annual Rainfall, Podzol White Sand vs. Clay-Silt terrains, ALOS_MTPI Multiscale Topographic Position Index, TopoDiver Topographic Diversity Index, Ppt_sea precipitation seasonality, ALOS_3D elevation, Temp_range temperature range, Temp_seas temperature seasonality, pH soil pH, SB soil sum of bases.
Fig. 2
Fig. 2. Variation in interpolated composition and relative abundance of 5,188 tree species in 47,441 grid cells (0.1-degree squares) across Amazonian forests.
Ordination biplots showing the two first DCA axes with grid cells coloured by geographic region: CA Central Amazonia, EA Eastern Amazonia, GS Guiana Shield, NWA Northwestern Amazonia, SWA Southwestern Amazonia, SA Southern Amazonia. Black marks show the average position for the abundance distribution of the 20 tree species with the highest interpolated total abundance. The distributions of these species in geographical and ordination space are shown in Supplementary Figs. 5–24.
Fig. 3
Fig. 3. Maps of the broad-scale spatial variation of tree species composition across Amazonia.
Scores of (a) DCA Axis 1, (b) DCA Axis2 (both from Fig. 2). In both maps, grey lines are the isolines linking equal levels of DCA scores, with the spatial distance between consecutive isolines being inversely related to the rate of compositional change across space and used to mark sharp compositional turnover zones (if closer together) or smoother compositional turnover (consecutive isolines further apart). In (a), the blue isoline corresponds to DCA score of 1.0 and the red isoline to soil pH = 5 (west of that line having a soil pH >5). In (b), the red isoline corresponds to maximum climatological water deficit (MCWD) = − 275 mm (south of that line having MCWD < −275), and the blue isoline to MCWD = −100 (west that line having MCWD > −100). The dark green line delimits the Amazonian tropical forests, with white areas within these limits corresponding to montane areas (above 500 m elevation) and non-forested habitats such as savannas. Major river courses are shown in blue. Base map source for countries: https://www.naturalearthdata.com/; rivers. Maps created with custom R script.
Fig. 4
Fig. 4. Niche positions and niche breadths of 5188 tree species along environmental and compositional gradients in Amazonia as calculated with data from 2023 1-ha forest-inventory plots.
Gradients along the x axis: (a) Annual rainfall (mm); (b) maximum climatological water deficit (mm); (c) log(soil sum of bases (Ca+Mg+K)); (d) soil acidity (pH); (e) DCA1 scores from Fig. 2; and (f) DCA2 scores from Fig. 2. The black dots mark the mean niche position or optimum (weighted average value) for each species and the grey lines depict the niche breadths or tolerance (±standard deviation for the variable in sites where the species was observed). The red lines show the mean niche breadth (determined by loess regression). Coloured lines correspond to the lines also visible in Fig. 3 (DCA1, DCA2, pH, MCWD). Species are shown from bottom to top in the order of increasing niche position. (See supplementary data 1 for the niche breadth and position values of all tree species).
Fig. 5
Fig. 5. The associations of species niche positions on compositional and environmental gradients.
In the first row the species niche positions on the DCA1 scores gradient in relation to edaphic niche position gradients: (a) Soil sum of bases, (b) Soil pH. The second row shows the species niche positions along the DCA2 scores gradient in relation to climatic gradients: (c) Annual Rainfall, (d) Maximum climatological water deficit. Plot colours correspond to colours in Fig. 3. Coloured lines correspond to the lines (DCA1, pH, MCWD) also visible in Fig. 3.

References

    1. Lomolino, M. V., Riddle, B. R. & Whittaker, R. J. Biogeography (Fifth edition). (Oxford University Press, 2017).
    1. Ducke, A. & Black, G. A. Phytogeographical notes on the Brazilian Amazon. Acad. Bras. Cienc.25, 1–46 (1953).
    1. Huber, J. Novitates florae amazonicae. Bol. do Mus. Goeldi de. Historia Nat. e Ethnographia6, 60–90 (1909).
    1. Antonelli, A. et al. Amazonia is the primary source of Neotropical biodiversity. Proc. Natl Acad. Sci. USA10.1073/pnas.1713819115 (2018). - PMC - PubMed
    1. Antonelli, A. & Sanmartín, I. Why are there so many plant species in the Neotropics? TAXON60, 403–414 (2011).

LinkOut - more resources