Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2024 Oct 7;161(13):134508.
doi: 10.1063/5.0231689.

Relaxation dynamics of a liquid in the vicinity of an attractive surface: The process of escaping from the surface

Affiliations

Relaxation dynamics of a liquid in the vicinity of an attractive surface: The process of escaping from the surface

Alireza F Behbahani et al. J Chem Phys. .

Abstract

We analyze the displacements of the particles of a glass-forming molecular liquid perpendicular to a confining solid surface using extensive molecular dynamics simulations with atomistic models. In the vicinity of an attractive surface, the liquid molecules are trapped. Transient localization of liquid molecules near the surface introduces a relaxation process related to the escape of molecules from the surface into the dynamics of the interfacial liquid layer. To describe this process, we analyze several dynamical observables of the confined liquid. The self-intermediate scattering function and the mean-squared displacement of the particles located in the interfacial layer are dominated by the process of escaping from the surface. This relaxation process is also associated with a strong heterogeneity in the mobility of the interfacial particles. The studied model liquid is hydrogenated methyl methacrylate. For the confining wall, we consider different models, namely a periodic single layer of graphene and a frozen amorphous configuration of the bulk liquid (frozen wall). Near graphene, where the liquid molecules form a layered structure and adopt parallel-to-surface orientation, a clear separation between small-scale movements of the molecules near the surface and the process of escaping from the surface is observed. This is reflected in the three-step relaxation of the interfacial layer. However, near the frozen wall, where the liquid molecules do not have a preferential alignment, a clear three-step relaxation is not seen, even though the dynamical quantities are controlled by the process of escaping from the surface.

PubMed Disclaimer

LinkOut - more resources