Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2024 Dec 9;11(24):6342-6351.
doi: 10.1039/d4mh00985a.

A transparent p-type semiconductor designed via a polarizability-enhanced strongly correlated insulator oxide matrix

Affiliations

A transparent p-type semiconductor designed via a polarizability-enhanced strongly correlated insulator oxide matrix

Seung Yong Lee et al. Mater Horiz. .

Abstract

Electron-transporting transparent conducting oxides (TCOs) are a commercial reality, however, hole-transporting counterparts are far more challenging because of limited material design. Here, we propose a strategy for enhancing the hole conductivity without deteriorating the band gap (Eg) and workfunction (Φ) by Cu incorporation in a strongly correlated NiWO4 insulator. The optimal Cu-doped NiWO4 (Cu0.185Ni0.815WO4) exhibits a resistivity reduction of ∼109 times versus NiWO4 as well as band-like charge transport with the hole mobility approaching 7 cm2 V-1 s-1 at 200 K, a deep Φ of 5.77 eV, and Eg of 2.8 eV. Experimental and theoretical data reveal that the strength of the electron correlation in NiWO4 is unaffected by Cu incorporation, while the promoted polarizability weakens electron-phonon coupling, promoting the formation of large polarons. Quantum dot light-emitting and oxide p/n junction devices incorporating Cu0.185Ni0.815WO4 exhibit remarkable performances, demonstrating that our approach can be deployed to discover new p-type TCOs.

PubMed Disclaimer

LinkOut - more resources