Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2024 Nov 6;68(11):e0077524.
doi: 10.1128/aac.00775-24. Epub 2024 Oct 4.

Relative inhibitory activities of newly developed diazabicyclooctanes, boronic acid derivatives, and penicillin-based sulfone β-lactamase inhibitors against broad-spectrum AmpC β-lactamases

Affiliations

Relative inhibitory activities of newly developed diazabicyclooctanes, boronic acid derivatives, and penicillin-based sulfone β-lactamase inhibitors against broad-spectrum AmpC β-lactamases

Christophe Le Terrier et al. Antimicrob Agents Chemother. .

Abstract

The relative inhibitory activities of diazabicyclooctanes (avibactam, relebactam, zidebactam, nacubactam, durlobactam), boronic acid derivatives (vaborbactam, taniborbactam, xeruborbactam), and penicillin-based sulfone derivative enmetazobactam were evaluated against several intrinsic and acquired class C β-lactamases. By contrast to vaborbactam and enmetazobactam, taniborbactam, xeruborbactam, and all diazabicyclooctanes demonstrated effective activities against most AmpC enzymes. Notably, durlobactam exhibited the most pronounced inhibitory effect. Interstingly, the chromosomal AmpC of Acinetobacter baumannii was the least sensitive enzyme to the newly developed β-lactamase inhibitors.

Keywords: AmpC; avibactam; class C; durlobactam; enmetazobactam; nacubactam; relebactam; taniborbactam; vaborbactam; xeruborbactam; zidebactam; β-lactamase.

PubMed Disclaimer

Conflict of interest statement

The authors declare no conflict of interest.

References

    1. Blair JMA, Webber MA, Baylay AJ, Ogbolu DO, Piddock LJV. 2015. Molecular mechanisms of antibiotic resistance. Nat Rev Microbiol 13:42–51. doi:10.1038/nrmicro3380 - DOI - PubMed
    1. Poirel L, Madec JY, Lupo A, Schink AK, Kieffer N, Nordmann P, Schwarz S. 2018. Antimicrobial resistance in Escherichia coli. Microbiol Spectr 6. doi:10.1128/microbiolspec.ARBA-0026-2017 - DOI - PMC - PubMed
    1. Ambler RP. 1980. The structure of beta-lactamases. Philos Trans R Soc Lond B Biol Sci 289:321–331. doi:10.1098/rstb.1980.0049 - DOI - PubMed
    1. Nordmann P, Poirel L. 2002. Emerging carbapenemases in Gram-negative aerobes. Clin Microbiol Infect 8:321–331. doi:10.1046/j.1469-0691.2002.00401.x - DOI - PubMed
    1. Philippon A, Arlet G, Labia R, Iorga BI. 2022. Class C β-lactamases: molecular characteristics. Clin Microbiol Rev 35:e0015021. doi:10.1128/cmr.00150-21 - DOI - PMC - PubMed

Publication types

MeSH terms

LinkOut - more resources