Mapping new psychoactive substances: Leveraging GIS technology for advanced global surveillance and policy support
- PMID: 39366517
- DOI: 10.1016/j.yrtph.2024.105713
Mapping new psychoactive substances: Leveraging GIS technology for advanced global surveillance and policy support
Abstract
The escalating challenge of New Psychoactive Substances (NPS) necessitates enhanced global monitoring and analysis capabilities. This study introduces an advanced interactive visualization tool that employs Geographic Information System (GIS) technologies to improve the functionality of the UNODC's Early Warning Advisory. The tool enables dynamic observation and analysis of NPS's geographical and temporal distribution, thereby facilitating a comprehensive understanding of their public health impacts. By incorporating detailed choropleth maps and annual and cumulative bar charts, the tool allows policymakers and researchers to visually track and analyze trends in NPS usage and control efforts across different regions. The results demonstrate the tool's effectiveness in providing actionable insights, which support the strategic development of public health policies and interventions to curb the global rise in NPS usage. This initiative illustrates the essential role of digital tools in enhancing public health strategies and responses to emerging drug trends. This rising challenge underscores the urgent need for innovative solutions in monitoring drug trends, a theme explored in this paper. The web tool is available at https://nps-vis.cmdm.tw, and the code is available at https://github.com/CMDM-Lab/nps-vis.
Keywords: Data visualization; Drug policy development; Geographic information systems (GIS); Global drug monitoring; Interactive visualization tools; New psychoactive substances (NPS); UNODC.
Copyright © 2024 Elsevier Inc. All rights reserved.
Conflict of interest statement
Declaration of competing interest The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.
MeSH terms
Substances
LinkOut - more resources
Full Text Sources
Miscellaneous
