Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2024 Oct 24;67(20):18384-18399.
doi: 10.1021/acs.jmedchem.4c01682. Epub 2024 Oct 7.

Discovery of a Potent, Selective, and Blood-Brain Barrier Permeable Non-nitrocatechol Inhibitor of Catechol- O-methyltransferase

Affiliations

Discovery of a Potent, Selective, and Blood-Brain Barrier Permeable Non-nitrocatechol Inhibitor of Catechol- O-methyltransferase

Sofia Benfeito et al. J Med Chem. .

Abstract

A new library of non-nitrocatechol compounds (HetCAMs) was developed and their efficacy was compared to tolcapone, a standard COMT inhibitor for PD. Compound 9 emerged as the most potent inhibitor, showing selective inhibition of brain (IC50 = 24 nM) and liver (IC50 = 81 nM) MB-COMT over liver S-COMT (IC50 = 620 nM) isoforms. Although compound 9 presented higher IC50 values than tolcapone, it was more selective for brain MB-COMT than liver S-COMT. Unlike tolcapone, compound 9 is not a tight-binding inhibitor and is less cytotoxic to HepG2 and SK-N-SH cells. Additionally, compound 9 is predicted to cross the blood-brain barrier (BBB) by passive diffusion and chelate divalent metals like Fe(II) and Cu(II). The results demonstrate the potential of this rational drug design strategy for developing new CNS-active drug candidates, offering symptom relief via COMT inhibition that can provide a long-term, disease-modifying outcome (chelation of divalent metals) in PD.

PubMed Disclaimer

MeSH terms

LinkOut - more resources