Mechanochemically responsive polymer enables shockwave visualization
- PMID: 39375357
- PMCID: PMC11458618
- DOI: 10.1038/s41467-024-52663-1
Mechanochemically responsive polymer enables shockwave visualization
Abstract
Understanding the physical and chemical response of materials to impulsive deformation is crucial for applications ranging from soft robotic locomotion to space exploration to seismology. However, investigating material properties at extreme strain rates remains challenging due to temporal and spatial resolution limitations. Combining high-strain-rate testing with mechanochemistry encodes the molecular-level deformation within the material itself, thus enabling the direct quantification of the material response. Here, we demonstrate a mechanophore-functionalized block copolymer that self-reports energy dissipation mechanisms, such as bond rupture and acoustic wave dissipation, in response to high-strain-rate impacts. A microprojectile accelerated towards the polymer permanently deforms the material at a shallow depth. At intersonic velocities, the polymer reports significant subsurface energy absorption due to shockwave attenuation, a mechanism traditionally considered negligible compared to plasticity and not well explored in polymers. The acoustic wave velocity of the material is directly recovered from the mechanochemically-activated subsurface volume recorded in the material, which is validated by simulations, theory, and acoustic measurements. This integration of mechanochemistry with microballistic testing enables characterization of high-strain-rate mechanical properties and elucidates important insights applicable to nanomaterials, particle-reinforced composites, and biocompatible polymers.
© 2024. This is a U.S. Government work and not under copyright protection in the US; foreign copyright protection may apply.
Conflict of interest statement
The authors declare no competing interests.
Figures




References
-
- Thoma, K., Hornemann, U., Sauer, M. & Schneider, E. Shock waves - phenomenology, experimental, and numerical simulation. Meteorit. Planet. Sci.40, 1283–1298 (2005).
-
- Telford, W. M., Geldart, L. P. & Sheriff, R. E. Applied Geophysics 2 edn (Cambridge University Press, Cambridge, 1990).
-
- Wu, C.-Y., Li, L.-Y. & Thornton, C. Energy dissipation during normal impact of elastic and elastic-plastic spheres. Int. J. Impact Eng.32, 593–604 (2005).
-
- Hutchings, I. M. Energy absorbed by elastic waves during plastic impact. J. Phys. D: Appl. Phys.12, 1819–1824 (1979).
-
- Lee, J.-H. et al. High strain rate deformation of layered nanocomposites. Nat. Commun.3, 1–9 (2012). - PubMed
Grants and funding
LinkOut - more resources
Full Text Sources