Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2024 Dec 19;144(25):2652-2665.
doi: 10.1182/blood.2023023179.

GSDME-mediated pyroptosis contributes to chemotherapy-induced platelet hyperactivity and thrombotic potential

Affiliations

GSDME-mediated pyroptosis contributes to chemotherapy-induced platelet hyperactivity and thrombotic potential

Ruyi Xue et al. Blood. .

Abstract

Thrombotic complications due to platelet hyperreactivity are a major cause of death in patients undergoing chemotherapy. However, the underlying mechanisms are not fully understood. Herein, using human platelets and platelets from mice lacking gasdermin E (GSDME), we show that GSDME is functionally expressed in anucleate platelets, and that GSDME-mediated pyroptosis, a newly identified form of cell death in mammalian nucleated cells, contributes to platelet hyperactivity in cisplatin-based chemotherapy. Cisplatin or etoposide activates caspase-3 to cleave GSDME, thereby releasing the N-terminal fragment of GSDME (GSDME-N) toward the platelet plasma membrane, subsequently forming membrane pores and facilitating platelet granule release. This eventually promotes platelet hyperactivity and thrombotic potential. We identified flotillin-2, a scaffold protein, as a GSDME-N interactor that recruits GSDME-N to the platelet membrane. Loss of GSDME protects mice from cisplatin-induced platelet hyperactivity. Our results provide evidence that targeting GSDME-mediated pyroptosis could reduce thrombotic potential in chemotherapy.

PubMed Disclaimer

MeSH terms