Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2024 Oct 22;18(42):28910-28923.
doi: 10.1021/acsnano.4c09156. Epub 2024 Oct 11.

Antibody-Free Glycogen Nanoparticles Engage Human Immune T Cells for Intracellular Delivery of Small Drugs or mRNA

Affiliations

Antibody-Free Glycogen Nanoparticles Engage Human Immune T Cells for Intracellular Delivery of Small Drugs or mRNA

Soraia Fernandes et al. ACS Nano. .

Abstract

T cells play a major role in immune defense against viral infections and diseases such as cancer. Accordingly, developing nanoparticle (NP) systems to effectively deliver therapeutics to T cells is of interest. However, NP-mediated delivery of drugs to T cells is challenging because of the nonphagocytic nature of T cells. To engage T cells and induce cellular internalization, NPs are typically decorated with specific receptor-targeting antibodies, often using laborious and costly procedures. Herein, we report that natural glycogen NPs (i.e., nanosugars) with different sizes (20-80 nm) and surface charges (neutral and positively charged) engage Jurkat T cells, undergo intracellular trafficking, and release encapsulated drug without the use of receptor-targeting antibodies. Specifically, glycogen-resveratrol constructs are employed to reactivate HIV-1 latently infected Jurkat T cells (J-Lat A2) and trigger proviral expression. Both neutral and positively charged glycogen NPs engage with J-Lat A2 cells. Large (84 ± 29 nm) and positively charged (23 ± 5 mV) NPs, denoted phytoglycogen-ethylenediamine (PGEDA) NPs, readily associate with the cell membrane and are internalized (60%) in J-Lat A2 cells but remain confined in the endocytic vesicles, with moderate reactivation of latent HIV-1 (4.7 ± 0.5%). Conversely, small (21 ± 5 nm) and positively charged (10 ± 6 mV) NPs, bovine glycogen-EDA (BGEDA) NPs, associate slowly with T cells but show nearly 100% internalization and efficient endosomal escape properties, resulting in 1.5-fold higher reactivation of latent HIV-1 in T cells. PGEDA NPs and BGEDA NPs are also internalized by primary human T cells (>90% cell association) and enable the transfection of mRNA, with BGEDA NPs showing a 2-fold higher transfection than PGEDA NPs. This work highlights the potential of BGEDA NPs for the effective intracellular delivery of small-molecule drugs and mRNA in T cells.

Keywords: endosomal escape; glycogen nanoparticles; human immune T cells; mRNA delivery; resveratrol.

PubMed Disclaimer

References

Publication types

LinkOut - more resources