Exploring the reclamation pathway science of Beachwood powder for pharmaceutical acetaminophen drug effluent management
- PMID: 39392806
- PMCID: PMC11469541
- DOI: 10.1371/journal.pone.0309552
Exploring the reclamation pathway science of Beachwood powder for pharmaceutical acetaminophen drug effluent management
Abstract
High effective low-cost substance derived from agriculture-based waste towards a circular economy concept showed a significant green approach for pharmaceuticals uptake in aqueous solution. Beachwood sawdust was used as the source of cellulose based adsorbents. Cellulose is isolated from the waste and in parallel magnetite nanoparticles are prepared by the simple co-precipitation technique and the two substances are mixed in various proportions to be acetaminophen adsorbent. Characteristics of the prepared magnetite (M)/sawdust (SD) composite in various proportions (M:SD (1:1), M:SD (1:2), M:SD (1:3), M:SD (1:5) and M:SD (2:1) were assessed using scanning electron microscope (SEM) transmission electron microscope (TEM) and X-ray diffractometer (XRD) which revealed the presence magnetite and cellulose. Also, for the object of recoverable adsorbent, vibrating sample magnetometer (VSM) of the adsorbent is investigated to evaluate its sustainability. The highest removal rate was associated with M:SD (1:2) compared to the other composites and the pristine magnetite or sawdust materials within 2 hours of isotherm time. The adsorption parameters are optimized and the maximal yield is attained at pH (7.0), adsorbent dose of 2.0 g/L at room temperature. The adsorption matrix is following Langmuir model and fitted to the second-order kinetic model. The process is exothermic in nature and highlighted physisorption tendency. The highest monolayer adsorption uptake was investigated at 7.0 mg/g which corresponds to the M:SD (1:2) adsorbent.
Copyright: © 2024 Hassan et al. This is an open access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.
Conflict of interest statement
The authors have declared that no competing interests exist.
Figures











References
-
- Shaheen T. I. H. E. Emam, Sono-chemical synthesis of cellulose nanocrystals from wood sawdust using acid hydrolysis, Int. J. Biol. Macromol., 2018, 107, 1599–1606 - PubMed
-
- Emam H. E.; AhmedT H. B., Bechtold. In-situ deposition of Cu2O micro-needles for biologically active textiles and their release properties, Carbohydr. Polym., 2017, 165, 255–265 - PubMed
-
- Marques C.; Marcuzzo J.; Baldan M.; Mestre A.; Carvalho A., Pharmaceuticals removal by activated carbons: role of morphology on cyclic thermal regeneration, Chem. Eng. J., 2017, 321, 233–244.
-
- Mestre A.; Pires R.; Aroso I.; Fernandes E.; Pinto M.; Reis R.; et al.. Activated carbons prepared from industrial pre-treated cork: sustainable adsorbents for pharmaceutical compounds removal, Chem. Eng. J., 2014. 253, 408–417.
-
- Andrade J.; Oliveira M.; Meuris S.; Melissa G., Adsorption of pharmaceuticals from water and wastewater using nonconventional low-cost materials: a review, Ind. Eng. Chem. Res., 2018, 57, 3103–3127.
MeSH terms
Substances
LinkOut - more resources
Full Text Sources