Constructing Electron-Rich Ru Clusters on Non-Stoichiometric Copper Hydroxide for Superior Biocatalytic ROS Scavenging to Treat Inflammatory Spinal Cord Injury
- PMID: 39394880
 - DOI: 10.1002/adma.202411618
 
Constructing Electron-Rich Ru Clusters on Non-Stoichiometric Copper Hydroxide for Superior Biocatalytic ROS Scavenging to Treat Inflammatory Spinal Cord Injury
Abstract
Traumatic spinal cord injury (SCI) represents a complex neuropathological challenge that significantly impacts the well-being of affected individuals. The quest for efficacious antioxidant and anti-inflammatory therapies is both a compelling necessity and a formidable challenge. Here, in this work, the innovative synthesis of electron-rich Ru clusters on non-stoichiometric copper hydroxide that contain oxygen vacancy defects (Ru/def-Cu(OH)2), which can function as a biocatalytic reactive oxygen species (ROS) scavenger for efficiently suppressing the inflammatory cascade reactions and modulating the endogenous microenvironments in SCI, is introduced. The studies reveal that the unique oxygen vacancies promote electron redistribution and amplify electron accumulation at Ru clusters, thus enhancing the catalytic activity of Ru/def-Cu(OH)2 in multielectron reactions involving oxygen-containing intermediates. These advancements endow the Ru/def-Cu(OH)2 with the capacity to mitigate ROS-mediated neuronal death and to foster a reparative microenvironment by dampening inflammatory macrophage responses, meanwhile concurrently stimulating the activity of neural stem cells, anti-inflammatory macrophages, and oligodendrocytes. Consequently, this results in a robust reparative effect on traumatic SCI. It is posited that the synthesized Ru/def-Cu(OH)2 exhibits unprecedented biocatalytic properties, offering a promising strategy to develop ROS-scavenging and anti-inflammatory materials for the management of traumatic SCI and a spectrum of other diseases associated with oxidative stress.
Keywords: anti‐inflammatory therapies; bioinspired materials; reactive oxygen species (ROS) scavenging materials; spinal cord injuries; tissue regeneration.
© 2024 Wiley‐VCH GmbH.
References
- 
    
- F. B. Wagner, J. B. Mignardot, C. G. Le Goff‐Mignardot, R. Demesmaeker, S. Komi, M. Capogrosso, A. Rowald, I. F. B. Wagner, J. B. Mignardot, C. G. Le Goff‐Mignardot, R. Demesmaeker, S. Komi, M. Capogrosso, A. Rowald, I. Seáñez, M. Caban, E. Pirondini, M. Vat, L. A. McCracken, R. Heimgartner, I. Fodor, A. Watrin, P. Seguin, E. Paoles, K. Van Den Keybus, G. Eberle, B. Schurch, E. Pralong, F. Becce, J. Prior, et al., Nature 2018, 563, 65.
 
 - 
    
- A. Anjum, M. D. Yazid, M. Fauzi Daud, J. Idris, A. M. H. Ng, A. Selvi Naicker, O. H. R. Ismail, R. K. Athi Kumar, Y. Lokanathan, Int. J. Mol. Sci. 2020, 21, 7533.
 
 - 
    
- H. Cowan, C. Lakra, M. Desai, BMJ 2020, 371, m3596.
 
 - 
    
- K. Yang, J. Yang, W. Man, Z. Meng, C.‐Y. Yang, Z. Cao, J. Liu, K. Kim, Y. Liu, S. Yang, Adv. Fiber Mater. 2023, 5, 1349.
 
 - 
    
- Y. Chen, X. Dong, M. Shafiq, G. Myles, N. Radacsi, X. Mo, Adv. Fiber Mater. 2022, 4, 959.
 
 
MeSH terms
Substances
Grants and funding
- 2024YFE0200089/National Key Research and Development Program of China
 - 2021YFA1100603/National Key Research and Development Program of China
 - 52161145402/National Natural Science Foundations of China
 - 52173133/National Natural Science Foundations of China
 - 82071092/National Natural Science Foundations of China
 
- U21A20369/National Natural Science Foundations of China
 - 52373148/National Natural Science Foundations of China
 - 2022NSFSC0366/Natural Science Foundations of Sichuan Province
 - 2023YFH0008/Sichuan Science and Technology Program
 - 2023YFS0056/Sichuan Science and Technology Program
 - 2019M663525/China Postdoctoral Science Foundation
 - RCDWJS2023-16/Research Funding from West China School/Hospital of Stomatology Sichuan University
 
LinkOut - more resources
Full Text Sources
Medical
