Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2025 Jan;38(1):e5274.
doi: 10.1002/nbm.5274. Epub 2024 Oct 12.

Prediction of MRI R 2 * $$ {\mathrm{R}}_2^{\ast } $$ relaxometry in the presence of hepatic steatosis by Monte Carlo simulations

Affiliations

Prediction of MRI R 2 * $$ {\mathrm{R}}_2^{\ast } $$ relaxometry in the presence of hepatic steatosis by Monte Carlo simulations

Mengyuan Ma et al. NMR Biomed. 2025 Jan.

Abstract

To develop Monte Carlo simulations to predict the relationship of R 2 * $$ {\mathrm{R}}_2^{\ast } $$ with liver fat content at 1.5 T and 3.0 T. For various fat fractions (FFs) from 1% to 25%, four types of virtual liver models were developed by incorporating the size and spatial distribution of fat droplets. Magnetic fields were then generated under different fat susceptibilities at 1.5 T and 3.0 T, and proton movement was simulated for phase accrual and MRI signal synthesis. The synthesized signal was fit to single-peak and multi-peak fat signal models for R 2 * $$ {\mathrm{R}}_2^{\ast } $$ and proton density fat fraction (PDFF) predictions. In addition, the relationships between R 2 * $$ {\mathrm{R}}_2^{\ast } $$ and PDFF predictions were compared with in vivo calibrations and Bland-Altman analysis was performed to quantitatively evaluate the effects of these components (type of virtual liver model, fat susceptibility, and fat signal model) on R 2 * $$ {\mathrm{R}}_2^{\ast } $$ predictions. A virtual liver model with realistic morphology of fat droplets was demonstrated, and R 2 * $$ {\mathrm{R}}_2^{\ast } $$ and PDFF values were predicted by Monte Carlo simulations at 1.5 T and 3.0 T. R 2 * $$ {\mathrm{R}}_2^{\ast } $$ predictions were linearly correlated with PDFF, while the slope was unaffected by the type of virtual liver model and increased as fat susceptibility increased. Compared with in vivo calibrations, the multi-peak fat signal model showed superior performance to the single-peak fat signal model, which yielded an underestimation of liver fat. The R 2 * $$ {\mathrm{R}}_2^{\ast } $$ -PDFF relationships by simulations with fat susceptibility of 0.6 ppm and the multi-peak fat signal model were R 2 * = 0.490 × PDFF + 28.0 $$ {\mathrm{R}}_2^{\ast }=0.490\times \mathrm{PDFF}+28.0 $$ ( R 2 = 0.967 $$ {R}^2=0.967 $$ , p < 0.01 $$ p<0.01 $$ ) at 1.5 T and R 2 * = 0.928 × PDFF + 39.4 $$ {\mathrm{R}}_2^{\ast }=0.928\times \mathrm{PDFF}+39.4 $$ ( R 2 = 0.972 $$ {R}^2=0.972 $$ , p < 0.01 $$ p<0.01 $$ ) at 3.0 T. Monte Carlo simulations provide a new means for R 2 * $$ {\mathrm{R}}_2^{\ast } $$ -PDFF prediction, which is primarily determined by fat susceptibility, fat signal model, and magnetic field strength. Accurate R 2 * $$ {\mathrm{R}}_2^{\ast } $$ -PDFF calibration has the potential to correct the effect of fat on R 2 * $$ {\mathrm{R}}_2^{\ast } $$ quantification, and may be helpful for accurate R 2 * $$ {\mathrm{R}}_2^{\ast } $$ measurements in liver iron overload.

Keywords: R 2 * $$ {\mathrm{R}}_2^{\ast } $$ ; Monte Carlo simulations; hepatic steatosis; proton density fat fraction.

PubMed Disclaimer

Similar articles

Cited by

References

REFERENCES

    1. Brunt EM. Pathology of nonalcoholic fatty liver disease. Nat Rev Gastroenterol Hepatol. 2010;7(4):195‐203. doi:10.1038/nrgastro.2010.21
    1. Younossi ZM, Koenig AB, Abdelatif D, Fazel Y, Henry L, Wymer M. Global epidemiology of nonalcoholic fatty liver disease‐meta‐analytic assessment of prevalence, incidence, and outcomes. Hepatology. 2016;64(1):73‐84. doi:10.1002/hep.28431
    1. Neven B, Ivan L, Lea S‐D, Vedran T, Marko D. Overview and developments in noninvasive diagnosis of nonalcoholic fatty liver disease. World J Gastroenterol. 2012;18(30):3945‐3954. doi:10.3748/wjg.v18.i30.3945
    1. Ratziu V, Charlotte F, Heurtier A, et al. Sampling variability of liver biopsy in nonalcoholic fatty liver disease. Gastroenterology. 2005;128(7):1898‐1906. doi:10.1053/j.gastro.2005.03.084
    1. Starekova J, Hernando D, Pickhardt PJ, Reeder SB. Quantification of liver fat content with CT and MRI: state of the art. Radiology. 2021;301(2):250‐262. doi:10.1148/radiol.2021204288

LinkOut - more resources