Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2024 Nov 20:225:641-653.
doi: 10.1016/j.freeradbiomed.2024.10.280. Epub 2024 Oct 11.

Connexin30-deficient mice increase susceptibility to noise via redox and lactate imbalances

Affiliations
Free article

Connexin30-deficient mice increase susceptibility to noise via redox and lactate imbalances

Jifang Zhang et al. Free Radic Biol Med. .
Free article

Abstract

Noise significantly contributes to one-third of the global burden of hearing loss. The intricate interplay of genetic and environmental factors impacts various molecular and cellular processes that lead to noise-induced hearing loss (NIHL). Defective connexin 26 (Cx26) and connexin 30 (Cx30), encoded by Gjb2/Cx26 and Gjb6/Cx30, respectively, are prevalent causes of hereditary deafness. However, the role of Cx30 in the pathogenesis of NIHL remains unclear. Herein, we observed that homozygous Cx30 knockout (Cx30 KO) mice exhibited poorer hearing recovery after noise exposure (97 dB mean sound pressure level for 2 h) and increased susceptibility to noise. In addition to the exacerbation of noise-induced damage to hair cells and synapses, Cx30 KO mice exposed to noise exhibited increased oxidative stress. The 2-(N-(7-nitrobenz-2-oxa-1,3-dia-zol-4-yl) amino)-2-deoxyglucose assay showed a reduction in glucose levels associated with a decrease in gap junctions as well as a reduction in adenosine triphosphate release. Glucose metabolomics analysis further revealed that Cx30 KO mice had elevated lactate and NAD + levels after noise exposure, thus worsening anaerobic oxidation from glycolysis. Our study emphasizes that Cx30-deficient mice increase susceptibility to noise via redox and lactate imbalances in the cochlea.

Keywords: Connexin 30; Glucose metabolism; Lactate; Noise-induced hearing loss; Oxidative stress.

PubMed Disclaimer

Conflict of interest statement

Declaration of competing interest The authors declare that they have no competing interests.

MeSH terms