This is a preprint.
Digital phenotyping from wearables using AI characterizes psychiatric disorders and identifies genetic associations
- PMID: 39399036
- PMCID: PMC11469395
- DOI: 10.1101/2024.09.23.24314219
Digital phenotyping from wearables using AI characterizes psychiatric disorders and identifies genetic associations
Update in
-
Digital phenotyping from wearables using AI characterizes psychiatric disorders and identifies genetic associations.Cell. 2025 Jan 23;188(2):515-529.e15. doi: 10.1016/j.cell.2024.11.012. Epub 2024 Dec 19. Cell. 2025. PMID: 39706190 Free PMC article.
Abstract
Psychiatric disorders are complex and influenced by both genetic and environmental factors. However, studying the full spectrum of these disorders is hindered by practical limitations on measuring human behavior. This highlights the need for novel technologies that can measure behavioral changes at an intermediate level between diagnosis and genotype. Wearable devices are a promising tool in precision medicine, since they can record physiological measurements over time in response to environmental stimuli and do so at low cost and minimal invasiveness. Here we analyzed wearable and genetic data from a cohort of the Adolescent Brain Cognitive Development study. We generated >250 wearable-derived features and used them as intermediate phenotypes in an interpretable AI modeling framework to assign risk scores and classify adolescents with psychiatric disorders. Our model identifies key physiological processes and leverages their temporal patterns to achieve a higher performance than has been previously possible. To investigate how these physiological processes relate to the underlying genetic architecture of psychiatric disorders, we also utilized these intermediate phenotypes in univariate and multivariate GWAS. We identified a total of 29 significant genetic loci and 52 psychiatric-associated genes, including ELFN1 and ADORA3. These results show that wearable-derived continuous features enable a more precise representation of psychiatric disorders and exhibit greater detection power compared to categorical diagnostic labels. In summary, we demonstrate how consumer wearable technology can facilitate dimensional approaches in precision psychiatry and uncover etiological linkages between behavior and genetics.
Publication types
Grants and funding
- U24 DA041147/DA/NIDA NIH HHS/United States
- U01 DA051039/DA/NIDA NIH HHS/United States
- U01 DA041120/DA/NIDA NIH HHS/United States
- U01 DA051018/DA/NIDA NIH HHS/United States
- U01 DA041093/DA/NIDA NIH HHS/United States
- U24 DA041123/DA/NIDA NIH HHS/United States
- U01 DA051038/DA/NIDA NIH HHS/United States
- U01 DA051016/DA/NIDA NIH HHS/United States
- U01 DA041106/DA/NIDA NIH HHS/United States
- U01 DA041117/DA/NIDA NIH HHS/United States
- U01 DA041148/DA/NIDA NIH HHS/United States
- U01 DA041174/DA/NIDA NIH HHS/United States
- U01 DA041134/DA/NIDA NIH HHS/United States
- U01 DA041022/DA/NIDA NIH HHS/United States
- RF1 MH123245/MH/NIMH NIH HHS/United States
- R01 AA031017/AA/NIAAA NIH HHS/United States
- U01 DA041156/DA/NIDA NIH HHS/United States
- U01 DA050987/DA/NIDA NIH HHS/United States
- R01 AA030971/AA/NIAAA NIH HHS/United States
- U01 DA051037/DA/NIDA NIH HHS/United States
- U01 DA041025/DA/NIDA NIH HHS/United States
- U01 DA050989/DA/NIDA NIH HHS/United States
- U01 DA041089/DA/NIDA NIH HHS/United States
- U54 AA027989/AA/NIAAA NIH HHS/United States
- U01 DA050988/DA/NIDA NIH HHS/United States
- U01 DA041028/DA/NIDA NIH HHS/United States
- U01 DA041048/DA/NIDA NIH HHS/United States
LinkOut - more resources
Full Text Sources