Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 1985;1(1):57-67.
doi: 10.1163/156856885x00080.

Spatial phase and frequency in motion capture of random-dot patterns

Affiliations

Spatial phase and frequency in motion capture of random-dot patterns

V S Ramachandran et al. Spat Vis. 1985.

Abstract

A square matrix of spots (A) was presented in rapid alternation with an uncorrelated matrix (B). If the square arrays are superimposed spatially one sees random incoherent motion. However, incoherent motion was seen only if the outer edges were exactly aligned. If the outline of matrix A is shifted horizontally by 1 degree in relation to B, then the edges are seen to oscillate to and fro. Surprisingly, all the dots in the matrix were seen to 'adhere' to the edges and to move horizontally (Ramachandran, 1981). We then aligned the edges again to produce incoherent motion and superimposed a sine-wave grating on the pattern. If the grating was moved horizontally then all the spots 'adhered' to it and moved horizontally as well. This illusion ('motion capture') was optimal (a) at a 90 degrees spatial phase shift of the grating; (b) at low spatial frequencies (less than 0.5 cycles); and (c) when the grating was alternated in step with the dot patterns. Density modulated gratings were just as effective. We conclude that the unambiguous motion signal derived from the grating is applied spontaneously to the dots as well.

PubMed Disclaimer

MeSH terms