Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
Meta-Analysis
. 2024 Oct 14;10(10):CD015618.
doi: 10.1002/14651858.CD015618.

Laboratory-based molecular test alternatives to RT-PCR for the diagnosis of SARS-CoV-2 infection

Affiliations
Meta-Analysis

Laboratory-based molecular test alternatives to RT-PCR for the diagnosis of SARS-CoV-2 infection

Ingrid Arevalo-Rodriguez et al. Cochrane Database Syst Rev. .

Abstract

Background: Diagnosing people with a SARS-CoV-2 infection played a critical role in managing the COVID-19 pandemic and remains a priority for the transition to long-term management of COVID-19. Initial shortages of extraction and reverse transcription polymerase chain reaction (RT-PCR) reagents impaired the desired upscaling of testing in many countries, which led to the search for alternatives to RNA extraction/purification and RT-PCR testing. Reference standard methods for diagnosing the presence of SARS-CoV-2 infection rely primarily on real-time reverse transcription-polymerase chain reaction (RT-PCR). Alternatives to RT-PCR could, if sufficiently accurate, have a positive impact by expanding the range of diagnostic tools available for the timely identification of people infected by SARS-CoV-2, access to testing and the use of resources.

Objectives: To assess the diagnostic accuracy of alternative (to RT-PCR assays) laboratory-based molecular tests for diagnosing SARS-CoV-2 infection.

Search methods: We searched the COVID-19 Open Access Project living evidence database from the University of Bern until 30 September 2020 and the WHO COVID-19 Research Database until 31 October 2022. We did not apply language restrictions.

Selection criteria: We included studies of people with suspected or known SARS-CoV-2 infection, or where tests were used to screen for infection, and studies evaluating commercially developed laboratory-based molecular tests for the diagnosis of SARS-CoV-2 infection considered as alternatives to RT-PCR testing. We also included all reference standards to define the presence or absence of SARS-CoV-2, including RT-PCR tests and established clinical diagnostic criteria.

Data collection and analysis: Two authors independently screened studies and resolved disagreements by discussing them with a third author. Two authors independently extracted data and assessed the risk of bias and applicability of the studies using the QUADAS-2 tool. We presented sensitivity and specificity, with 95% confidence intervals (CIs), for each test using paired forest plots and summarised results using average sensitivity and specificity using a bivariate random-effects meta-analysis. We illustrated the findings per index test category and assay brand compared to the WHO's acceptable sensitivity and specificity threshold for diagnosing SARS-CoV-2 infection using nucleic acid tests.

Main results: We included data from 64 studies reporting 94 cohorts of participants and 105 index test evaluations, with 74,753 samples and 7517 confirmed SARS-CoV-2 cases. We did not identify any published or preprint reports of accuracy for a considerable number of commercially produced NAAT assays. Most cohorts were judged at unclear or high risk of bias in more than three QUADAS-2 domains. Around half of the cohorts were considered at high risk of selection bias because of recruitment based on COVID status. Three quarters of 94 cohorts were at high risk of bias in the reference standard domain because of reliance on a single RT-PCR result to determine the absence of SARS-CoV-2 infection or were at unclear risk of bias due to a lack of clarity about the time interval between the index test assessment and the reference standard, the number of missing results, or the absence of a participant flow diagram. For index tests categories with four or more evaluations and when summary estimations were possible, we found that: a) For RT-PCR assays designed to omit/adapt RNA extraction/purification, the average sensitivity was 95.1% (95% CI 91.1% to 97.3%), and the average specificity was 99.7% (95% CI 98.5% to 99.9%; based on 27 evaluations, 2834 samples and 1178 SARS-CoV-2 cases); b) For RT-LAMP assays, the average sensitivity was 88.4% (95% CI 83.1% to 92.2%), and the average specificity was 99.7% (95% CI 98.7% to 99.9%; 24 evaluations, 29,496 samples and 2255 SARS-CoV-2 cases); c) for TMA assays, the average sensitivity was 97.6% (95% CI 95.2% to 98.8%), and the average specificity was 99.4% (95% CI 94.9% to 99.9%; 14 evaluations, 2196 samples and 942 SARS-CoV-2 cases); d) for digital PCR assays, the average sensitivity was 98.5% (95% CI 95.2% to 99.5%), and the average specificity was 91.4% (95% CI 60.4% to 98.7%; five evaluations, 703 samples and 354 SARS-CoV-2 cases); e) for RT-LAMP assays omitting/adapting RNA extraction, the average sensitivity was 73.1% (95% CI 58.4% to 84%), and the average specificity was 100% (95% CI 98% to 100%; 24 evaluations, 14,342 samples and 1502 SARS-CoV-2 cases). Only two index test categories fulfil the WHO-acceptable sensitivity and specificity requirements for SARS-CoV-2 nucleic acid tests: RT-PCR assays designed to omit/adapt RNA extraction/purification and TMA assays. In addition, WHO-acceptable performance criteria were met for two assays out of 35 when tests were used according to manufacturer instructions. At 5% prevalence using a cohort of 1000 people suspected of SARS-CoV-2 infection, the positive predictive value of RT-PCR assays omitting/adapting RNA extraction/purification will be 94%, with three in 51 positive results being false positives, and around two missed cases. For TMA assays, the positive predictive value of RT-PCR assays will be 89%, with 6 in 55 positive results being false positives, and around one missed case.

Authors' conclusions: Alternative laboratory-based molecular tests aim to enhance testing capacity in different ways, such as reducing the time, steps and resources needed to obtain valid results. Several index test technologies with these potential advantages have not been evaluated or have been assessed by only a few studies of limited methodological quality, so the performance of these kits was undetermined. Only two index test categories with enough evaluations for meta-analysis fulfil the WHO set of acceptable accuracy standards for SARS-CoV-2 nucleic acid tests: RT-PCR assays designed to omit/adapt RNA extraction/purification and TMA assays. These assays might prove to be suitable alternatives to RT-PCR for identifying people infected by SARS-CoV-2, especially when the alternative would be not having access to testing. However, these findings need to be interpreted and used with caution because of several limitations in the evidence, including reliance on retrospective samples without information about the symptom status of participants and the timing of assessment. No extrapolation of found accuracy data for these two alternatives to any test brands using the same techniques can be made as, for both groups, one test brand with high accuracy was overrepresented with 21/26 and 12/14 included studies, respectively. Although we used a comprehensive search and had broad eligibility criteria to include a wide range of tests that could be alternatives to RT-PCR methods, further research is needed to assess the performance of alternative COVID-19 tests and their role in pandemic management.

PubMed Disclaimer

Conflict of interest statement

Ingrid Arevalo‐Rodriguez: IAR has been an employee of the Cochrane Central Executive Team (Cochrane Response/Evidence, Production & Methods Directorate) since 2021.

Miriam Mateos: none known.

Jacqueline Dinnes: none known.

Clare Davenport: none known.

Agustin Ciapponi: none known.

Diana Buitrago‐Garcia: none known.

Tayeb Bennouna Dalero: none known.

Marta Roque‐Figuls: none known.

Ann Van den Bruel: none known.

Karin Jasmijn von Eije: KVE worked as a staff member till mid‐January 2021 for WHO; in that capacity, she has been involved in guidance on SARS‐CoV‐2 diagnostics. After that, she worked as a clinical virologist at the UMCG in Groningen and, in that capacity, was not directly involved in activities of WHO regarding guidance on molecular diagnostics for SARS‐CoV‐2; her contracted work did include work focused on the WHO SARS‐CoV‐2 laboratory network until August 2023. Since September 2023, she has worked at the Erasmus MC, University Medical Center, as a clinical virologist and has continued to perform contracted work, but not on WHO guidance on clinical molecular diagnostics for SARS‐CoV‐2 or the WHO SARS‐CoV‐2 laboratory network.

Devy Emperador: DE is employed by FIND with funding from DFID and KFW. FIND is a global non‐for‐profit product development partnership and WHO Diagnostic Collaboration Centre. It is FIND's role to accelerate access to high‐quality diagnostic tools for low‐resource settings, and this is achieved by supporting both R&D and access activities for a wide range of diseases, including COVID‐19. FIND has several clinical research projects to evaluate multiple new diagnostic tests against published Target Product Profiles that have been defined through consensus processes. These studies are for diagnostic products developed by private sector companies who provide access to know‐how, equipment/reagents, and contribute through unrestricted donations as per FIND policy and external SAC review.

Lotty Hooft: none known.

Mariska MG Leeflang: none known.

René Spijker: the Dutch Cochrane Centre (DCC) has received grants for performing commissioned systematic reviews. The commissioner did not have any influence on the results of this work.

Yemisi Takwoingi: none known.

Jonathan J Deeks: JD has published or been quoted in opinion pieces in scientific publications, and in the mainstream and social media related to diagnostic testing. JD is a member of the Royal Statistical Society (RSS) COVID‐19 task force steering group and co‐chair of the RSS Diagnostic Test Advisory Group. He is a consultant adviser to the WHO Essential Diagnostic List. JD receives payment from the BMJ as their Chief Statistical advisor.

Similar articles

  • Rapid, point-of-care antigen tests for diagnosis of SARS-CoV-2 infection.
    Dinnes J, Sharma P, Berhane S, van Wyk SS, Nyaaba N, Domen J, Taylor M, Cunningham J, Davenport C, Dittrich S, Emperador D, Hooft L, Leeflang MM, McInnes MD, Spijker R, Verbakel JY, Takwoingi Y, Taylor-Phillips S, Van den Bruel A, Deeks JJ; Cochrane COVID-19 Diagnostic Test Accuracy Group. Dinnes J, et al. Cochrane Database Syst Rev. 2022 Jul 22;7(7):CD013705. doi: 10.1002/14651858.CD013705.pub3. Cochrane Database Syst Rev. 2022. PMID: 35866452 Free PMC article.
  • Antibody tests for identification of current and past infection with SARS-CoV-2.
    Fox T, Geppert J, Dinnes J, Scandrett K, Bigio J, Sulis G, Hettiarachchi D, Mathangasinghe Y, Weeratunga P, Wickramasinghe D, Bergman H, Buckley BS, Probyn K, Sguassero Y, Davenport C, Cunningham J, Dittrich S, Emperador D, Hooft L, Leeflang MM, McInnes MD, Spijker R, Struyf T, Van den Bruel A, Verbakel JY, Takwoingi Y, Taylor-Phillips S, Deeks JJ; Cochrane COVID-19 Diagnostic Test Accuracy Group. Fox T, et al. Cochrane Database Syst Rev. 2022 Nov 17;11(11):CD013652. doi: 10.1002/14651858.CD013652.pub2. Cochrane Database Syst Rev. 2022. PMID: 36394900 Free PMC article.
  • The effect of sample site and collection procedure on identification of SARS-CoV-2 infection.
    Davenport C, Arevalo-Rodriguez I, Mateos-Haro M, Berhane S, Dinnes J, Spijker R, Buitrago-Garcia D, Ciapponi A, Takwoingi Y, Deeks JJ, Emperador D, Leeflang MMG, Van den Bruel A; Cochrane COVID-19 Diagnostic Test Accuracy Group. Davenport C, et al. Cochrane Database Syst Rev. 2024 Dec 16;12(12):CD014780. doi: 10.1002/14651858.CD014780. Cochrane Database Syst Rev. 2024. PMID: 39679851 Free PMC article.
  • Signs and symptoms to determine if a patient presenting in primary care or hospital outpatient settings has COVID-19.
    Struyf T, Deeks JJ, Dinnes J, Takwoingi Y, Davenport C, Leeflang MM, Spijker R, Hooft L, Emperador D, Domen J, Tans A, Janssens S, Wickramasinghe D, Lannoy V, Horn SRA, Van den Bruel A; Cochrane COVID-19 Diagnostic Test Accuracy Group. Struyf T, et al. Cochrane Database Syst Rev. 2022 May 20;5(5):CD013665. doi: 10.1002/14651858.CD013665.pub3. Cochrane Database Syst Rev. 2022. PMID: 35593186 Free PMC article.
  • Thoracic imaging tests for the diagnosis of COVID-19.
    Ebrahimzadeh S, Islam N, Dawit H, Salameh JP, Kazi S, Fabiano N, Treanor L, Absi M, Ahmad F, Rooprai P, Al Khalil A, Harper K, Kamra N, Leeflang MM, Hooft L, van der Pol CB, Prager R, Hare SS, Dennie C, Spijker R, Deeks JJ, Dinnes J, Jenniskens K, Korevaar DA, Cohen JF, Van den Bruel A, Takwoingi Y, van de Wijgert J, Wang J, Pena E, Sabongui S, McInnes MD; Cochrane COVID-19 Diagnostic Test Accuracy Group. Ebrahimzadeh S, et al. Cochrane Database Syst Rev. 2022 May 16;5(5):CD013639. doi: 10.1002/14651858.CD013639.pub5. Cochrane Database Syst Rev. 2022. PMID: 35575286 Free PMC article.

Cited by

References

References to studies included in this review

Alves 2021 {published data only}
    1. Alves PA, De Oliveira EG, Franco-Luiz APM, Almeida LT, Gonçalves AB, Borges IA, et al. Optimization and clinical validation of colorimetric reverse transcription loop-mediated isothermal amplification, a fast, highly sensitive and specific COVID-19 molecular diagnostic tool that Is robust to detect SARS-CoV-2 variants of concern. Frontiers in Microbiology 2021;12:713713. [PMID: ] - PMC - PubMed
    1. Clinical validation of colorimetric RT-LAMP, a fast, highly sensitive and specific COVID-19 molecular diagnostic tool that is robust to detect SARS-CoV-2 variants of concern. medRxiv 2021;NA:1-38. [DOI: 10.1101/2021.05.26.21257488] - DOI - PMC - PubMed
Anastasiou 2021 (a) {published data only}
    1. Anastasiou OE, Holtkamp C, Schäfer M, Schön F, Eis-Hübinger AM, Krumbholz A. Fast detection of SARS-CoV-2 RNA directly from respiratory samples using a loop-mediated isothermal amplification (LAMP) test. Viruses 2021;13(5):801. [PMID: ] - PMC - PubMed
Anastasiou 2021 (b) {published data only}
    1. Anastasiou OE, Holtkamp C, Schäfer M, Schön F, Eis-Hübinger AM, Krumbholz A. Fast detection of SARS-CoV-2 RNA directly from respiratory samples using a loop-mediated isothermal amplification (LAMP) test. Viruses 2021;13(5):801. [PMID: ] - PMC - PubMed
Anastasiou 2021 (c) {published data only}
    1. Anastasiou OE, Holtkamp C, Schäfer M, Schön F, Eis-Hübinger AM, Krumbholz A. Fast detection of SARS-CoV-2 RNA directly from respiratory samples using a loop-mediated isothermal amplification (LAMP) test. Viruses 2021;13(5):801. [PMID: ] - PMC - PubMed
Antonara 2022 {published data only}
    1. Antonara S, Ozbolt P, Landon L, Fatica L, Pleasant T, Swickard J, et al. Detection of SARS-CoV-2 infection in asymptomatic populations using the DiaSorin molecular Simplexa and Roche Cobas EUA assays. Diagnostic Microbiology and Infectious Disease 2022;102(1):115513. [PMID: ] - PMC - PubMed
Aoki 2022 {published data only}
    1. Aoki K, Nagashima M, Kashiwagi K, Chiba T, Sadamasu K, Ishii Y, et al. Study on the usefulness of Direct Saliva sample Collection (DiSC) by polyester swab. medRxiv [Preprint] 2022;NA:1-9. [DOI: 10.1101/2022.02.25.22271529] - DOI
Ar Goiuilh 2020 (a) {published data only}
    1. Ar Gouilh M, Cassier R, Maille E, Schanen C, Rocque LM, Vabret A. An easy, reliable and rapid SARS-CoV2 RT-LAMP based test for point-of-care and diagnostic lab. medRxiv [Preprint] 2020;NA:1-9. [DOI: 10.1101/2020.09.25.20200956] - DOI
Ar Goiuilh 2020 (b) {published data only}
    1. Ar Gouilh M, Cassier R, Maille E, Schanen C, Rocque LM, Vabret A. An easy, reliable and rapid SARS-CoV2 RT-LAMP based test for point-of-care and diagnostic lab. medRxiv [Preprint] 2020;NA:1-9. [DOI: 10.1101/2020.09.25.20200956] - DOI
Ar Goiuilh 2020 (c) {published data only}
    1. Ar Gouilh M, Cassier R, Maille E, Schanen C, Rocque LM, Vabret A. An easy, reliable and rapid SARS-CoV2 RT-LAMP based test for point-of-care and diagnostic lab. medRxiv [Preprint] 2020;NA:1-9. [DOI: 10.1101/2020.09.25.20200956] - DOI
Ar Goiuilh 2020 (d) {published data only}
    1. Ar Gouilh M, Cassier R, Maille E, Schanen C, Rocque LM, Vabret A. An easy, reliable and rapid SARS-CoV2 RT-LAMP based test for point-of-care and diagnostic lab. medRxiv [Preprint] 2020;NA:1-9. [DOI: 10.1101/2020.09.25.20200956] - DOI
Bordi 2020 (a) {published data only}
    1. Bordi L, Piralla A, Lalle E, Giardina F, Colavita F, Tallarita M, et al. Rapid and sensitive detection of SARS-CoV-2 RNA using the Simplexa COVID-19 direct assay. Journal of Clinical Virology 2020;128:104416. [PMID: ] - PMC - PubMed
Bordi 2020 (b) {published data only}
    1. Bordi L, Piralla A, Lalle E, Giardina F, Colavita F, Tallarita M, et al. Rapid and sensitive detection of SARS-CoV-2 RNA using the Simplexa COVID-19 direct assay. Journal of Clinical Virology 2020;128:104416. [PMID: ] - PMC - PubMed
Bordi 2020 (c) {published data only}
    1. Bordi L, Piralla A, Lalle E, Giardina F, Colavita F, Tallarita M, et al. Rapid and sensitive detection of SARS-CoV-2 RNA using the Simplexa COVID-19 direct assay. Journal of Clinical Virology 2020;128:104416. [PMID: ] - PMC - PubMed
Brandsma 2020 {published data only}
    1. Brandsma E, Verhagen H, Van de Laar TJW, Claas ECJ, Cornelissen M, Van den Akker E. Rapid, sensitive and specific SARS coronavirus-2 detection: a multi-center comparison between standard qRT-PCR and CRISPR based DETECTR. Journal of Infectious Diseases 2021;223(2):206-13. [PMID: ] - PMC - PubMed
    1. Brandsma E, Verhagen H, Van de Laar TJW, Claas ECJ, Cornelissen M, Van den Akker E. Rapid, sensitive and specific SARS coronavirus-2 detection: a multi-center comparison between standard qRT-PCR and CRISPR based DETECTR. medRxiv 2020;NA:1-14. [DOI: 10.1101/2020.07.27.20147249] - DOI - PMC - PubMed
Broughton 2020 {published data only}
    1. Broughton JP, Deng X, Yu G, Fasching CL, Servellita V, Singh J, et al. CRISPR-Cas12-based detection of SARS-CoV-2. Nature Biotechnology 2020;38(7):870-4. [PMID: ] - PMC - PubMed
    1. Broughton JP, Deng X, Yu G, Fasching CL, Singh J, Streithorst J, et al. Rapid detection of 2019 novel coronavirus SARS-CoV-2 using a CRISPR-based DETECTR lateral flow assay. medRxiv 2020;NA:1-28. [DOI: 10.1101/2020.03.06.20032334] - DOI
Brown 2022 (a) {published data only}
    1. Brown B, O'Hara RW, Guiver M, Davies E, Birtles A, Farooq H, et al. Evaluation of a novel direct RT-LAMP assay for the detection of SARS-CoV-2 from saliva samples in asymptomatic individuals. Journal of Clinical Virology Plus 2022;2(2):100074. [PMID: ] - PMC - PubMed
Brown 2022 (b) {published data only}
    1. Brown B, O'Hara RW, Guiver M, Davies E, Birtles A, Farooq H, et al. Evaluation of a novel direct RT-LAMP assay for the detection of SARS-CoV-2 from saliva samples in asymptomatic individuals. Journal of Clinical Virology Plus 2022;2(2):100074. [PMID: ] - PMC - PubMed
Brown 2022 (c) {published data only}
    1. Brown B, O'Hara RW, Guiver M, Davies E, Birtles A, Farooq H, et al. Evaluation of a novel direct RT-LAMP assay for the detection of SARS-CoV-2 from saliva samples in asymptomatic individuals. Journal of Clinical Virology Plus 2022;2(2):100074. [PMID: ] - PMC - PubMed
Brown CA 2021 (a) {published data only}
    1. Brown CA, Amerson-Brown MH, Rahman A, Webb CR, Singh IR, Dunn JJ. Performance of six SARS-CoV-2 RNA detection systems in symptomatic and asymptomatic pediatric and maternal patients. Future Virology 2021;17(3):159-67. [PMID: ] - PMC - PubMed
Brown CA 2021 (b) {published data only}
    1. Brown CA, Amerson-Brown MH, Rahman A, Webb CR, Singh IR, Dunn JJ. Performance of six SARS-CoV-2 RNA detection systems in symptomatic and asymptomatic pediatric and maternal patients. Future Virology 2021;17(3):159-67. [PMID: ] - PMC - PubMed
Brown CA 2021 (c) {published data only}
    1. Brown CA, Amerson-Brown MH, Rahman A, Webb CR, Singh IR, Dunn JJ. Performance of six SARS-CoV-2 RNA detection systems in symptomatic and asymptomatic pediatric and maternal patients. Future Virology 2021;17(3):159-67. [PMID: ] - PMC - PubMed
Brown CA 2021 (d) {published data only}
    1. Brown CA, Amerson-Brown MH, Rahman A, Webb CR, Singh IR, Dunn JJ. Performance of six SARS-CoV-2 RNA detection systems in symptomatic and asymptomatic pediatric and maternal patients. Future Virology 2021;17(3):159-67. [PMID: ] - PMC - PubMed
Cordes 2021 {published data only}
    1. Cordes AK, Rehrauer WM, Accola MA, Woelk B, Hilfrich B, Heim A. Fully automated detection and differentiation of pandemic and endemic coronaviruses (NL63, 229E, HKU1, OC43 and SARS-CoV-2) on the Hologic Panther Fusion. medRxiv 2020;NA:1-25. [DOI: 10.1101/2020.08.31.20185074] - DOI - PubMed
    1. Cordes AK, Rehrauer WM, Accola MA, Wölk B, Hilfrich B, Heim A. Fully automated detection and differentiation of pandemic and endemic coronaviruses (NL63, 229E, HKU1, OC43 and SARS-CoV-2) on the Hologic Panther Fusion. Journal of Medical Virology 2021;93(7):4438-45. [PMID: ] - PubMed
Cradic 2020 {published data only}
    1. Cradic K, Lockhart M, Ozbolt P, Fatica L, Landon L, Lieber M, et al. Clinical evaluation and utilization of multiple molecular in vitro diagnostic assays for the detection of SARS-CoV-2. American Journal of Clinical Pathology 2020;154(2):201-7. [PMID: ] - PMC - PubMed
Dang 2020 {published data only}
    1. Dang Y, Liu N, Tan C, Feng Yi, Yuan X, Fan D, et al. Comparison of qualitative and quantitative analyses of COVID-19 clinical samples. Clinica Chimica Acta 2020;510:613-6. [PMID: ] - PMC - PubMed
Domnich 2021 {published data only}
    1. Domnich A, Orsi A, Panatto D, De Pace V, Ricucci V, Caligiuri P, et al. Comparative diagnostic performance of a novel reverse transcription loop-mediated isothermal amplification (RT-LAMP) kit for the rapid detection of SARS-CoV-2. Pathogens 2021;10(12):1629. [PMID: ] - PMC - PubMed
Doria 2022 (a) {published data only}
    1. Doria G, Clemente C, Coelho E, Colaço J, Crespo R, Semikhodskii A, et al. An isothermal lab-on-phone test for easy molecular diagnostic of SARS-CoV-2 near patient and in less than 1 hour. International Journal of Infectious Diseases 2022;123:1-8. [PMID: ] - PMC - PubMed
Doria 2022 (b) {published data only}
    1. Doria G, Clemente C, Coelho E, Colaço J, Crespo R, Semikhodskii A, et al. An isothermal lab-on-phone test for easy molecular diagnostic of SARS-CoV-2 near patient and in less than 1 hour. International Journal of Infectious Diseases 2022;123:1-8. [PMID: ] - PMC - PubMed
Dossou 2022 (a) {published data only}
    1. Dossou NC, Gaubert I, Maille E, Morello R, Cassier R, Schanen C, et al. Use of LoopDeelab during the COVID-19 pandemic: an innovative device for field diagnosis. Viruses 2022;14(9):2062. [PMID: ] - PMC - PubMed
Dossou 2022 (b) {published data only}
    1. Dossou NC, Gaubert I, Maille E, Morello R, Cassier R, Schanen C, et al. Use of LoopDeelab during the COVID-19 pandemic: an innovative device for field diagnosis. Viruses 2022;14(9):2062. [PMID: ] - PMC - PubMed
Eckel 2020 {published data only}
    1. Eckel F, Kusters F, Drossel B, Konert M, Mattes H, Schopf S. Variplex test system fails to reliably detect SARS-CoV-2 directly from respiratory samples without RNA extraction. European Journal of Clinical Microbiology and Infectious Diseases 2020;39(12):2373-7. [PMID: ] - PMC - PubMed
Egerer 2021 (a) {published data only}
    1. Egerer R, Edel B, Löffler B, Henke A, Rödel J. Performance of the RT-LAMP-based eazyplex® SARS-CoV-2 as a novel rapid diagnostic test. Journal of Clinical Virology 2021;138:104817. [PMID: ] - PMC - PubMed
Egerer 2021 (b) {published data only}
    1. Egerer R, Edel B, Löffler B, Henke A, Rödel J. Performance of the RT-LAMP-based eazyplex® SARS-CoV-2 as a novel rapid diagnostic test. Journal of Clinical Virology 2021;138:104817. [PMID: ] - PMC - PubMed
Erdem 2022 {published data only}
    1. Erdem M, Andac-Ozketen A, Ozketen A, Karahan G, Tozluyurt A, Palaz F, et al. Clinical validation and the evaluation of a colorimetric SARS-CoV-2 RT-LAMP assay identify its robustness against RT-PCR (preprint). medRxiv [Preprint] 2022;NA:1-15. [DOI: 10.1101/2022.03.21.22271747] - DOI
    1. Erdem M, Andaç-Özketen A, Özketen AÇ, Karahan G, Tozluyurt A, Palaz F, et al. Clinical validation and evaluation of a colorimetric SARS-CoV-2 RT-LAMP assay against RT-PCR. Infection Disease Clinical Microbiology 2023;5(2):136-43. [DOI: 10.36519/idcm.2023.210] [PMID: ] - DOI - PMC - PubMed
Fernández‐Huerta 2022 {published data only}
    1. Fernández-Huerta M, Salmerón P, Hernández-Hermida Y, Andrés C, Niubó J, Calatayud L, et al. Multicenter clinical evaluation of a novel transcription-mediated amplification assay for SARS-CoV-2 molecular testing. Enfermedades Infecciosas y Microbiología Clínica 2022;NA:S2529-993X(23)00093-X. [PMID: ] - PMC - PubMed
Fowler 2020 (a) {published data only}
    1. Fowler VL, Armson B, Gonzales JL, Wise EL, Howson ELA, Vincent-Mistiaen Z, et al. A highly effective reverse-transcription loop-mediated isothermal amplification (RT-LAMP) assay for the rapid detection of SARS-CoV-2 infection. Journal of Infection 2021;82(1):117-25. [DOI: 10.1016/j.jinf.2020.10.039] [PMID: ] - DOI - PMC - PubMed
    1. Fowler VL, Armson B, Gonzales JL, Wise EL, Howson ELA, Vincent-Mistiaen Z, et al. A reverse-transcription loop-mediated isothermal amplification (RT-LAMP) assay for the rapid detection of SARS-CoV-2 within nasopharyngeal and oropharyngeal swabs at Hampshire Hospitals NHS Foundation Trust. medRxiv [Preprint] 2020;NA:1-30. [DOI: 10.1101/2020.06.30.20142935] - DOI
Fowler 2020 (b) {published data only}
    1. Fowler VL, Armson B, Gonzales JL, Wise EL, Howson ELA, Vincent-Mistiaen Z, et al. A highly effective reverse-transcription loop-mediated isothermal amplification (RT-LAMP) assay for the rapid detection of SARS-CoV-2 infection. Journal of Infection 2021;82(1):117-25. [DOI: 10.1016/j.jinf.2020.10.039] [PMID: ] - DOI - PMC - PubMed
    1. Fowler VL, Armson B, Gonzales JL, Wise EL, Howson ELA, Vincent-Mistiaen Z, et al. A reverse-transcription loop-mediated isothermal amplification (RT-LAMP) assay for the rapid detection of SARS-CoV-2 within nasopharyngeal and oropharyngeal swabs at Hampshire Hospitals NHS Foundation Trust. medRxiv [Preprint] 2020;NA:1-30. [DOI: 10.1101/2020.06.30.20142935] - DOI
Fowler 2020 (c) {published data only}
    1. Fowler VL, Armson B, Gonzales JL, Wise EL, Howson ELA, Vincent-Mistiaen Z, et al. A highly effective reverse-transcription loop-mediated isothermal amplification (RT-LAMP) assay for the rapid detection of SARS-CoV-2 infection. Journal of Infection 2021;82(1):117-25. [DOI: 10.1016/j.jinf.2020.10.039] [PMID: ] - DOI - PMC - PubMed
    1. Fowler VL, Armson B, Gonzales JL, Wise EL, Howson ELA, Vincent-Mistiaen Z, et al. A reverse-transcription loop-mediated isothermal amplification (RT-LAMP) assay for the rapid detection of SARS-CoV-2 within nasopharyngeal and oropharyngeal swabs at Hampshire Hospitals NHS Foundation Trust. medRxiv [Preprint] 2020;NA:1-30. [DOI: 10.1101/2020.06.30.20142935] - DOI
Freedman 2022 {published data only}
    1. Freedman SB, Oberding LK, Kim K, Xie J, Berenger BM, Goulden R, et al. SARS-CoV-2 viral load quantification, clinical findings and outcomes in children seeking Emergency Department care: prospective cohort study. Pediatric Infectious Disease Journal 2022;41(7):566-9. [PMID: ] - PMC - PubMed
Freire‐Paspuel 2021 {published data only}
    1. Freire-Paspuel B, Garcia-Bereguiain MA. Low clinical performance of the Isopollo COVID-19 detection kit (M Monitor, South Korea) for RT-LAMP SARS-CoV-2 diagnosis: a call for action against low quality products for developing countries. International Journal of Infectious Diseases 2021;104:303-5. [PMID: ] - PMC - PubMed
Ghosh 2022 {published data only}
    1. Ghosh P, Chowdhury R, Hossain ME, Hossain F, Miah M, Rashid MU, et al. Evaluation of recombinase-based isothermal amplification assays for point-of-need detection of SARS-CoV-2 in resource-limited settings. International Journal of Infectious Diseases 2022;114:105-11. [PMID: ] - PMC - PubMed
Gorzalski 2020 {published data only}
    1. Gorzalski AJ, Tian H, Laverdure C, Morzunov S, Verma SC, VanHooser S, et al. High-throughput transcription-mediated amplification on the Hologic Panther is a highly sensitive method of detection for SARS-CoV-2. Journal of Clinical Virology 2020;129:104501. [PMID: ] - PMC - PubMed
Higashimoto 2020 {published data only}
    1. Higashimoto Y, Ihira M, Kawamura Y, Inaba M, Shirato K, Suzuki T, et al. Dry loop-mediated isothermal amplification assay for detection of SARS-CoV-2 from clinical specimens. Fujita Medical Journal 2023;9(2):84-9. [DOI: ] - PMC - PubMed
    1. Higashimoto Y, Masaru I, Yoshiki K, Masato I, Kazuya S, Tadaki S, et al. Dry loop mediated isothermal amplification assay for detection of SARS-CoV-2 from clinical specimens. medRxiv [Preprint] 2020;NA:1-26. [DOI: 10.1101/2020.09.29.20204297] - DOI - PMC - PubMed
Jerbi 2022 {published data only}
    1. Jerbi L, Azrad M, Peretz A. Evaluation of factors that affect the performance of COVID-19 molecular assays including presence of symptoms, number of detected genes and RNA extraction type. Molecular Diagnosis & Therapy 2022;26(2):229-38. [PMID: ] - PMC - PubMed
Kanwar 2021 {published data only}
    1. Kanwar N, Banerjee D, Sasidharan A, Abdulhamid A, Larson M, Lee B, et al. Comparison of diagnostic performance of five molecular assays for detection of SARS-CoV-2. Diagnostic Microbiology and Infectious Disease 2021;101(4):115518. [PMID: ] - PMC - PubMed
Kidd 2021 (a) {published data only}
    1. Kidd SP, Burns D, Armson B, Beggs AD, Howson ELA, Williams A, et al. Reverse-transcription loop-mediated isothermal amplification has high accuracy for detecting severe acute respiratory syndrome Coronavirus 2 in saliva and nasopharyngeal/oropharyngeal swabs from asymptomatic and symptomatic individuals. Journal of Molecular Diagnostics 2022;24(4):320-36. [PMID: ] - PMC - PubMed
Kidd 2021 (b) {published data only}
    1. Kidd SP, Burns D, Armson B, Beggs AD, Howson ELA, Williams A, et al. Reverse-transcription loop-mediated isothermal amplification has high accuracy for detecting severe acute respiratory syndrome Coronavirus 2 in saliva and nasopharyngeal/oropharyngeal swabs from asymptomatic and symptomatic individuals. Journal of Molecular Diagnostics 2022;24(4):320-36. [PMID: ] - PMC - PubMed
Kidd 2021 (c) {published data only}
    1. Kidd SP, Burns D, Armson B, Beggs AD, Howson ELA, Williams A, et al. Reverse-transcription loop-mediated isothermal amplification has high accuracy for detecting severe acute respiratory syndrome Coronavirus 2 in saliva and nasopharyngeal/oropharyngeal swabs from asymptomatic and symptomatic individuals. Journal of Molecular Diagnostics 2022;24(4):320-36. [PMID: ] - PMC - PubMed
Kidd 2021 (d) {published data only}
    1. Kidd SP, Burns D, Armson B, Beggs AD, Howson ELA, Williams A, et al. Reverse-transcription loop-mediated isothermal amplification has high accuracy for detecting severe acute respiratory syndrome Coronavirus 2 in saliva and nasopharyngeal/oropharyngeal swabs from asymptomatic and symptomatic individuals. Journal of Molecular Diagnostics 2022;24(4):320-36. [PMID: ] - PMC - PubMed
Kim 2021 {published data only}
    1. Kim KB, Choi H, Lee GD, Lee J, Lee S, Kim Y, et al. Analytical and clinical performance of Droplet Digital PCR in the detection and quantification of SARS-CoV-2. Molecular Diagnosis & Therapy 2021;25(5):617-28. [PMID: ] - PMC - PubMed
Kitagawa 2020 {published data only}
    1. Kitagawa Y, Orihara Y, Kawamura R, Imai K, Sakai J, Tarumoto N, et al. Evaluation of rapid diagnosis of novel coronavirus disease (COVID-19) using loop-mediated isothermal amplification. Journal of Clinical Virology 2020;58(9):e01438-20. [PMID: ] - PMC - PubMed
Kitajima 2021 (a) {published data only}
    1. Kitajima H, Tamura Y, Yoshida H, Kinoshita H, Katsuta H, Matsui C, et al. Clinical COVID-19 diagnostic methods: comparison of reverse transcription loop-mediated isothermal amplification (RT-LAMP) and quantitative RT-PCR (qRT-PCR). Journal of Clinical Virology 2021;139:104813. [PMID: ] - PMC - PubMed
Kitajima 2021 (b) {published data only}
    1. Kitajima H, Tamura Y, Yoshida H, Kinoshita H, Katsuta H, Matsui C, et al. Clinical COVID-19 diagnostic methods: comparison of reverse transcription loop-mediated isothermal amplification (RT-LAMP) and quantitative RT-PCR (qRT-PCR). Journal of Clinical Virology 2021;139:104813. [PMID: ] - PMC - PubMed
Kuo 2021 {published data only}
    1. Kuo P, Realegeno S, Pride DT. Comparison of two nucleic acid amplification tests (NAATs) and two antigen tests for detection of SARS-CoV-2 from upper respiratory specimens. Journal of Clinical Virology Plus 2021;1(1):100011. [PMID: ] - PMC - PubMed
Kušnierová 2021 {published data only}
    1. Kušnierová P, Stejskal D, Švagera Z, Slepčanová H, Malurová M, Špulerová Z, et al. Comparison of two analytical methods for SARS-CoV-2 determination, RT-PCR vs. reverse transcription and loop-mediated isothermal amplification (RT-LAMP). Klinicka Biochemie a Metabolismus 2021;29(3):151-5. [EMBASE: covidwho-1820639]
LeGoff 2021 (a) {published data only}
    1. LeGoff J, Kernéis S, Elie C, Mercier-Delarue S, Gastli N, Choupeaux L, et al. Evaluation of a saliva molecular point of care for the detection of SARS-CoV-2 in ambulatory care. Scientific Reports 2021;11(1):21126. [PMID: ] - PMC - PubMed
LeGoff 2021 (b) {published data only}
    1. LeGoff J, Kernéis S, Elie C, Mercier-Delarue S, Gastli N, Choupeaux L, et al. Evaluation of a saliva molecular point of care for the detection of SARS-CoV-2 in ambulatory care. Scientific Reports 2021;11(1):21126. [PMID: ] - PMC - PubMed
Lephart 2021 {published data only}
    1. Lephart PR, Bachman MA, LeBar W, McClellan S, Barron K, Schroeder L, et al. Comparative study of four SARS-CoV-2 Nucleic Acid Amplification Test (NAAT) platforms demonstrates that ID NOW performance is impaired substantially by patient and specimen type. Diagnostic Microbiology and Infectious Disease 2021;99(1):115200. [PMID: ] - PMC - PubMed
Li 2022 {published data only}
    1. Li Z, Bruce JL, Cohen B, Cunningham CV, Jack WE, Kunin K, et al. Development and implementation of a simple and rapid extraction-free saliva SARS-CoV-2 RT-LAMP workflow for workplace surveillance. PLoS One 2022;17(5):e0268692. [PMID: ] - PMC - PubMed
Lieberman 2020 {published data only}
    1. Lieberman JA, Pepper G, Naccache SN, Huang ML, Jerome KR, Greninger AL. Comparison of commercially available and laboratory-developed assays for in vitro detection of SARS-CoV-2 in clinical laboratories. Journal of Clinical Microbiology 2020;58(8):e00821-20. [PMID: ] - PMC - PubMed
Lima 2020 {published data only}
    1. Lima A, Healer V, Vendrone E, Silbert S. Validation and comparison of a modified CDC assay with two commercially available assays for the detection of SARS-CoV-2 in respiratory specimen. bioRxiv [Preprint] 2020;NA:1-24. [DOI: 10.1101/2020.06.29.179192] - DOI - PMC - PubMed
    1. Lima A, Healer V, Vendrone E, Silbert S. Validation of a modified CDC assay and performance comparison with the NeuMoDx™ and DiaSorin® automated assays for rapid detection of SARS-CoV-2 in respiratory specimens. Journal Clinical Virology 2020;133:104688. [PMID: ] - PMC - PubMed
Liotti 2020 {published data only}
    1. Liotti FM, Menchinelli G, Marchetti S, Morandotti GA, Sanguinetti M, Posteraro B, et al. Evaluation of three commercial assays for SARS-CoV-2 molecular detection in upper respiratory tract samples. European Journal of Clinical Microbiology and Infectious Diseases 2021;40(2):269-77. [PMID: ] - PMC - PubMed
Marino 2022 {published data only}
    1. Marino FE, Proffitt E, Joseph E, Manoharan A. A rapid, specific, extraction-less, and cost-effective RT-LAMP test for the detection of SARS-CoV-2 in clinical specimens. PLoS One 2022;17(4):e0266703. [PMID: ] - PMC - PubMed
Milosevic 2022 {published data only}
    1. Milosevic D, Moyer AM, Majumdar R, Kipp BR, Yao JD. A reverse-transcription droplet digital PCR assay to detect and quantify SARS-CoV-2 RNA in upper respiratory tract specimens. Journal of Clinical Virology 2022;153:105216. [PMID: ] - PMC - PubMed
Mizoguchi 2021 [A] {published data only}
    1. Mizoguchi M, Harada S, Okamoto K, Higurashi Y, Ikeda M, Moriya K. Comparative performance and cycle threshold values of 10 nucleic acid amplification tests for SARS-CoV-2 on clinical samples. PLoS One 2021;16(6):e0252757. [PMID: ] - PMC - PubMed
Mizoguchi 2021 [B] {published data only}
    1. Mizoguchi M, Harada S, Okamoto K, Higurashi Y, Ikeda M, Moriya K. Comparative performance and cycle threshold values of 10 nucleic acid amplification tests for SARS-CoV-2 on clinical samples. PLoS One 2021;16:e0252757. [PMID: ] - PMC - PubMed
Mizoguchi 2021 [C] {published data only}
    1. Mizoguchi M, Harada S, Okamoto K, Higurashi Y, Ikeda M, Moriya K. Comparative performance and cycle threshold values of 10 nucleic acid amplification tests for SARS-CoV-2 on clinical samples. PLoS One 2021;16(6):e0252757. [PMID: ] - PMC - PubMed
Mizoguchi 2021 [D] {published data only}
    1. Mizoguchi M, Harada S, Okamoto K, Higurashi Y, Ikeda M, Moriya K. Comparative performance and cycle threshold values of 10 nucleic acid amplification tests for SARS-CoV-2 on clinical samples. PLoS One 2021;16(6):e0252757. [PMID: ] - PMC - PubMed
Ogawa 2023 {published data only}
    1. Ogawa M, Sato M, Yamakami A, Hayasaka Y, Saya Y, Une K, et al. Diagnostic test property of transcription-reverse transcription concerted reaction reagent TRCReady® SARS-CoV-2 i using nasopharyngeal swab samples. Journal of Infection and Chemotherapy 2023;29(1):115-7. [PMID: ] - PMC - PubMed
Österdahl 2020 {published data only}
    1. Österdahl MF, Lee KA, Lochlainn MN, Wilson S, Douthwaite S, Horsfall R, et al. Detecting SARS-CoV-2 at point of care: preliminary data comparing loop-mediated isothermal amplification (LAMP) to polymerase chain reaction (PCR). BMC Infectious Diseases 2020;20(1):783. [PMID: ] - PMC - PubMed
    1. Österdahl MF, Lee KA, Ni Lochlainn M, Wilson S, Douthwaite S, Horsfall R, et al. Detecting SARS-CoV-2 at point of care: preliminary data comparing Loop-mediated isothermal amplification (LAMP) to PCR. medRxiv 2020;NA:1-9. [DOI: 10.1101/2020.04.01.20047357] - DOI - PMC - PubMed
Peto 2020 {published data only}
    1. Peto L, Rodger G, Carter DP, Osman KL, Yavuz M, Johnson K, et al. Diagnosis of SARS-CoV-2 infection with LamPORE, a high-throughput platform combining loop-mediated isothermal amplification and nanopore sequencing. Journal of Clinical Microbiology 2021;59(6):e03271-20. [PMID: ] - PMC - PubMed
    1. Peto L, Rodger G, Carter DP, Osman KL, Yavuz M, Johnson K, et al. Diagnosis of SARS-CoV-2 infection with LamPORE, a high-throughput platform combining loop-mediated isothermal amplification and nanopore sequencing. medRxiv 2020;NA:1-23. [DOI: 10.1101/2020.09.18.20195370] - DOI - PMC - PubMed
Pham 2020 {published data only}
    1. Pham J, Meyer S, Nguyen C, Williams A, Hunsicker M, McHardy I, et al. Performance characteristics of a high-throughput automated transcription-mediated amplification test for SARS-CoV-2 detection. Journal Clinical Microbiology 2020;58(10):e01669-20. [PMID: ] - PMC - PubMed
Potter 2022 [A] {published data only}
    1. Potter RF, Ransom EM, Wallace MA, Johnson C, Kwon JH, Babcock HM, et al. Multiplatform assessment of saliva for SARS-CoV-2 molecular detection in symptomatic healthcare personnel and patients presenting to the Emergency Department. Journal of Applied Laboratory Medicine 2022;7(3):727-36. [PMID: ] - PMC - PubMed
Potter 2022 [B] {published data only}
    1. Potter RF, Ransom EM, Wallace MA, Johnson C, Kwon JH, Babcock HM, et al. Multiplatform assessment of saliva for SARS-CoV-2 molecular detection in symptomatic healthcare personnel and patients presenting to the Emergency Department. Journal of Applied Laboratory Medicine 2022;7(3):727-36. [PMID: ] - PMC - PubMed
Procop 2021 {published data only}
    1. Procop GW, Brock JE, Reineks EZ, Shrestha NK, Demkowicz R, Cook E, et al. A comparison of five SARS-CoV-2 molecular assays with clinical correlations. American Journal of Clinical Pathology 2021;155(1):69-78. [PMID: ] - PMC - PubMed
Promlek 2022 {published data only}
    1. Promlek T, Thanunchai M, Phumisantiphong U, Hansirisathit T, Phuttanu C, Dongphooyao S, et al. Performance of colorimetric reverse transcription loop-mediated isothermal amplification as a diagnostic tool for SARS-CoV-2 infection during the fourth wave of COVID-19 in Thailand. International Journal of Infectious Diseases 2022;116:133-7. [PMID: ] - PMC - PubMed
Ptasinska 2021 (a) {published data only}
    1. Ptasinska A, Whalley C, Bosworth A, Poxon C, Bryer C, Machin N, et al. Diagnostic accuracy of loop-mediated isothermal amplification coupled to nanopore sequencing (LamPORE) for the detection of SARS-CoV-2 infection at scale in symptomatic and asymptomatic populations. Clinical Microbiology and Infection 2021;27(9):1348.e1-1348.e7. [PMID: ] - PMC - PubMed
Ptasinska 2021 (b) {published data only}
    1. Ptasinska A, Whalley C, Bosworth A, Poxon C, Bryer C, Machin N, et al. Diagnostic accuracy of loop-mediated isothermal amplification coupled to nanopore sequencing (LamPORE) for the detection of SARS-CoV-2 infection at scale in symptomatic and asymptomatic populations. Clinical Microbiology and Infection 2021;27(9):1348.e1-1348.e7. [PMID: ] - PMC - PubMed
Ptasinska 2021 (c) {published data only}
    1. Ptasinska A, Whalley C, Bosworth A, Poxon C, Bryer C, Machin N, et al. Diagnostic accuracy of loop-mediated isothermal amplification coupled to nanopore sequencing (LamPORE) for the detection of SARS-CoV-2 infection at scale in symptomatic and asymptomatic populations. Clinical Microbiology and Infection 2021;27(9):1348.e1-1348.e7. [PMID: ] - PMC - PubMed
Raju 2021 {published data only}
    1. Raju S, Anderson NW, Robinson E, Squires C, Wallace MA, Zhang R, et al. Comparison of 6 SARS-CoV-2 molecular methods and correlation with the cycle threshold distribution in clinical specimens. Journal of Applied Laboratory Medicine 2021;6(6):1452-62. [PMID: ] - PMC - PubMed
Rodel 2020 (a) {published data only}
    1. Rodel J, Egerer R, Suleyman A, Sommer-Schmid B, Baier M, Henke A, et al. Use of the variplex SARS-CoV-2 RT-LAMP as a rapid molecular assay to complement RT-PCR for COVID-19 diagnosis. Journal of Clinical Virology 2020;132:104616. [PMID: ] - PMC - PubMed
Rodel 2020 (b) {published data only}
    1. Rodel J, Egerer R, Suleyman A, Sommer-Schmid B, Baier M, Henke A, et al. Use of the variplex SARS-CoV-2 RT-LAMP as a rapid molecular assay to complement RT-PCR for COVID-19 diagnosis. Journal of Clinical Virology 2020;132:104616. [PMID: ] - PMC - PubMed
Rosenstierne 2021 (a) {published data only}
    1. Rosenstierne MW, Joshi S, Danielsen ET, Webb H, Luong DM, Bjerring J, et al. SARS-CoV-2 detection using reverse transcription strand invasion based amplification and a portable compact size instrument. Scientific Reports 2021;11(1):22214. [PMID: ] - PMC - PubMed
Rosenstierne 2021 (b) {published data only}
    1. Rosenstierne MW, Joshi S, Danielsen ET, Webb H, Luong DM, Bjerring J, et al. SARS-CoV-2 detection using reverse transcription strand invasion based amplification and a portable compact size instrument. Scientific Reports 2021;11(1):22214. [PMID: ] - PMC - PubMed
Rosenstierne 2021 (c) {published data only}
    1. Rosenstierne MW, Joshi S, Danielsen ET, Webb H, Luong DM, Bjerring J, et al. SARS-CoV-2 detection using reverse transcription strand invasion based amplification and a portable compact size instrument. Scientific Reports 2021;11(1):22214. [PMID: ] - PMC - PubMed
Sauleda 2022 {published data only}
    1. Sauleda S, Palacios L, Brès V, Piñana M, Alonso-Hernandez L, Bes M, et al. Clinical evaluation of the Procleix SARS-CoV-2 assay, a sensitive, high-throughput test that runs on an automated system. Diagnostic Microbiology and Infectious Disease 2022;102(1):115560. [PMID: ] - PMC - PubMed
Schneider 2022 (a) {published data only}
    1. Schneider FS, Molina L, Picot MC, L'Helgoualch N, Espeut J, Champigneux P, et al. Performances of rapid and connected salivary RT-LAMP diagnostic test for SARS-CoV-2 infection in ambulatory screening. Scientific Reports 2022;12(1):2843. [PMID: ] - PMC - PubMed
Schneider 2022 (b) {published data only}
    1. Schneider FS, Molina L, Picot MC, L'Helgoualch N, Espeut J, Champigneux P, et al. Performances of rapid and connected salivary RT-LAMP diagnostic test for SARS-CoV-2 infection in ambulatory screening. Scientific Reports 2022;12(1):2843. [PMID: ] - PMC - PubMed
Shin 2022 {published data only}
    1. Shin W, Lee CJ, Lee YM, Choi YB, Mun S, Han K. Rapid identification of SARS-CoV-2 in the point-of-care using digital PCR-based Dr. PCR™ Di20K COVID-19 Detection Kit without viral RNA extraction. Genes & Genomics 2022;44(5):617-28. [PMID: ] - PMC - PubMed
Tanimoto 2022 {published data only}
    1. Tanimoto Y, Mori A, Miyamoto S, Ito E, Arikawa K, Iwamoto T. Comparison of RT-PCR, RT-LAMP, and antigen quantification assays for the detection of SARS-CoV-2. Japanese Journal of Infectious Diseases 2022;75(3):249-53. [PMID: ] - PubMed
Tibbetts 2020 (a) {published data only}
    1. Tibbetts R, Callahan K, Rofoo K, Zarbo RJ, Samuel L. Comparison of the NeuMoDX, Diasorin Simplexa, Cepheid and Roche CDC SARS-CoV 2 EUA assays using nasopharyngeal/nasal swabs in universal transport media (UTM) and sputum and tracheal aspirates. bioRxiv [Preprint] 2020;NA:1-16. [DOI: 10.1101/2020.05.26.118190] - DOI
Tibbetts 2020 (b) {published data only}
    1. Tibbetts R, Callahan K, Rofoo K, Zarbo RJ, Samuel L. Comparison of the NeuMoDX, Diasorin Simplexa, Cepheid and Roche CDC SARS-CoV 2 EUA assays using nasopharyngeal/nasal swabs in universal transport media (UTM) and sputum and tracheal aspirates. bioRxiv [Preprint] 2020;NA:1-16. [DOI: 10.1101/2020.05.26.118190] - DOI
Trémeaux 2020 (a) {published data only}
    1. Trémeaux P, Lhomme S, Abravanel F, Raymond S, Mengelle C, Mansuy JM, et al. Evaluation of the Aptima™ transcription-mediated amplification assay (Hologic®) for detecting SARS-CoV-2 in clinical specimens. Journal of Clinical Virology 2020;129:104541. [PMID: ] - PMC - PubMed
Trémeaux 2020 (b) {published data only}
    1. Trémeaux P, Lhomme S, Abravanel F, Raymond S, Mengelle C, Mansuy JM. Evaluation of the Aptima™ transcription-mediated amplification assay (Hologic®) for detecting SARS-CoV-2 in clinical specimens. Journal of Clinical Virology 2020;129:104541. [PMID: ] - PMC - PubMed
Wanney 2022 {published data only}
    1. Wanney J, Lüsebrink J, Spölgen G, Demuth S, Schildgen V, Schildgen O. Direct comparison of Altona-SARS-CoV-2 dual target RT-qPCR assay with commercial LAMP assay using throat washes in health care staff testing. Journal of Clinical Virology Plus 2022;2(3):100088. [PMID: ] - PMC - PubMed
Watanabe 2022 {published data only}
    1. Watanabe N, Watari T, Otsuka Y. Quality control of loop-mediated isothermal amplification (LAMP) using external control: detection of SARS-CoV-2 using nasopharyngeal specimens. Access Microbiology [Preprint] 2022;NA:1-21. [DOI: 10.1099/acmi.0.000477.v1] - DOI
Xu 2021 {published data only}
    1. Xu J, Kirtek T, Xu Y, Zheng H, Yao H, Ostman E, et al. Digital droplet PCR for SARS-CoV-2 resolves borderline cases. American Journal of Clinical Pathology 2021;155(6):815-22. [PMID: ] - PMC - PubMed
Zhen 2020 {published data only}
    1. Zhen W, Manji R, Smith E, Berry GJ. Comparison of four molecular in vitro diagnostic assays for the detection of SARS-CoV-2 in nasopharyngeal specimens. Journal of Clinical Microbiology 2020;58(8):e00743-20. [PMID: ] - PMC - PubMed

References to studies excluded from this review

Abasiyanik 2021 {published data only}
    1. Abasiyanik MF, Flood B, Lin J, Ozcan S, Rouhani SJ, Pyzer A, et al. Sensitive detection and quantification of SARS-CoV-2 in saliva. Scientific Reports 2021;11(1):12425. [PMID: ] - PMC - PubMed
Akimkin 2022 {published data only}
    1. Akimkin VG, Petrov VV, Krasovitov KV, Borisova NI, Kotov IA, Rodionova EN, et al. Molecular methods for diagnosing novel coronavirus infection: comparison of loop-mediated isothermal amplification and polymerase chain reaction. Voprosy Virusologii 2022;66(6):417-24. [PMID: ] - PubMed
Alekseenko 2021 {published data only}
    1. Alekseenko A, Barrett D, Pareja-Sanchez Y, Howard R, Strandback E, Ampah-Korsah H, et al. Detection of SARS-CoV-2 using non-commercial RT-LAMP regents and raw samples. Scientific Reports 2021;11(1):1820. [PMID: ] - PMC - PubMed
Ali 2020 {published data only}
    1. Ali Z, Aman R, Mahas A, Gundra S, Tehseen M, Marsic T, et al. ISCAN: an RT-LAMP-coupled CRISPR-Cas12 module for rapid, sensitive detection of SARS-CoV-2. Virus Research 2020;288:198129. [PMID: ] - PMC - PubMed
Anahtar 2020 {published data only}
    1. Anahtar MN, McGrath GEG, Rabe BA, Tanner NA, White BA, Lennerz JKM, et al. Clinical assessment and validation of a rapid and sensitive SARS-CoV-2 test using reverse-transcription loop-mediated isothermal amplification. Open Forum Infectious Diseases 2020;8(2):1-9. [PMID: ] - PMC - PubMed
Artik 2022 {published data only}
    1. Artik Y, Coşğun AB, Cesur NP, Hızel N, Uyar Y, Sur H, et al. Comparison of COVID-19 laboratory diagnosis by commercial kits: effectivity of RT-PCR to the RT-LAMP. Journal of Medical Virology 2022;94(5):1998-2007. [PMID: ] - PMC - PubMed
Assennato 2020 {published data only}
    1. Assennato SM, Ritchie AV, Nadala C, Goel N, Tie C, Nadala LM, et al. Performance evaluation of the SAMBA II SARS-CoV-2 test for point-of-care detection of SARS-CoV-2. Journal of Clinical Microbiology 2020;59(1):e01262-20. [PMID: ] - PMC - PubMed
Avetyan 2020 {published data only}
    1. Avetyan D, Chavushyan A, Ghazaryan H, Melkonyan A, Stepanyan A, Zakharyan R, et al. SARS-CoV-2 detection by extraction-free qRT-PCR for massive and rapid COVID-19 diagnosis during a pandemic. medRxiv 2020;NA:1-25. [DOI: 10.1101/2020.09.10.20191189] - DOI - PMC - PubMed
Baba 2021 {published data only}
    1. Baba MM, Bitew M, Fokam J, Lelo EA, Ahidjo A, Asmamaw K, et al. Diagnostic performance of a colorimetric RT -LAMP for the identification of SARS-CoV-2: a multicenter prospective clinical evaluation in sub-Saharan Africa. EClinicalMedicine 2021;40:101101. [PMID: ] - PMC - PubMed
Baek 2020 {published data only}
    1. Baek YH, Um J, Antigua KJC, Park JH, Kim Y, Oh S, et al. Development of a reverse transcription-loop-mediated isothermal amplification as a rapid early-detection method for novel SARS-CoV-2. Emerging Microbes & Infections 2020;9(1):998-1007. [PMID: ] - PMC - PubMed
Behrmann 2020 {published data only}
    1. Behrmann O, Bachmann I, Spiegel M, Schramm M, Abd El Wahed A, Dobler G, et al. Rapid detection of SARS-CoV-2 by low volume real-time single tube reverse transcription recombinase polymerase amplification using an Exo Probe with an internally linked quencher (Exo-IQ). Clinical Chemistry 2020;66(8):1047-54. [PMID: ] - PMC - PubMed
Ben‐Assa 2020 {published data only}
    1. Ben-Assa N, Naddaf R, Gefen T, Capucha T, Hajjo H, Mandelbaum N, et al. Direct on-the-spot detection of SARS-CoV-2 in patients. Experimental Biology and Medicine 2020;245(14):1187-93. [PMID: ] - PMC - PubMed
Bhoyar 2021 {published data only}
    1. Bhoyar RC, Jain A, Sehgal P, Divakar MK, Sharma D, Imran M, et al. High throughput detection and genetic epidemiology of SARS-CoV-2 using COVIDSeq next generation sequencing. PLoS One 2021;16(2):e0247115. [PMID: ] - PMC - PubMed
Bloom 2020 {published data only}
    1. Bloom JS, Jones EM, Gasperini M, Lubock NB, Sathe L, Munugala C, et al. Swab-Seq: a high-throughput platform for massively scaled up SARS-CoV-2 testing. medRxiv 2020;NA:1-58. [DOI: 10.1101/2020.08.04.20167874] - DOI
Buck 2020 {published data only}
    1. Buck MD, Poirier EZ, Cardoso A, Frederico B, Canton J, Barrell S, et al. Standard operating procedures for SARS-CoV-2 detection by a clinical diagnostic RT-LAMP assay. medRxiv 2020;NA:1-28. [PMID: 10.1101/2020.06.29.20142430v1] - DOI - PMC - PubMed
Butler 2020 {published data only}
    1. Butler DJ, Mozsary C, Meydan C, Danko D, Foox J, Rosiene J, et al. Shotgun transcriptome and isothermal profiling of SARS-CoV-2 infection reveals unique host responses, viral diversification, and drug interactions. bioRxiv 2020;NA:1-50. [DOI: 10.1101/2020.04.20.048066] - DOI - PMC - PubMed
Butt 2020 {published data only}
    1. Butt AM, Siddique S, An X, Tong Y. Development of a dual-gene loop-mediated isothermal amplification (LAMP) detection assay for SARS-CoV-2: a preliminary study. medRxiv 2020;NA:1-11. [DOI: 10.1101/2020.04.08.20056986] - DOI
Cassinari 2021 {published data only}
    1. Cassinari K, Alessandri-Gradt E, Chambon P, Charbonnier F, Gracias S, Beaussire L, et al. Assessment of multiplex digital droplet RT-PCR as a diagnostic tool for SARS-CoV-2 detection in nasopharyngeal swabs and saliva samples. Clinical Chemistry 2021;67(5):736-41. [PMID: ] - PMC - PubMed
Chow 2020 {published data only}
    1. Chow FW, Chan TT, Tam AR, Zhao S, Yao W, Fung J, et al. A rapid, simple, inexpensive, and mobile colorimetric assay COVID-19-LAMP for mass on-site screening of COVID-19. International Journal of Molecular Sciences 2020;21(15):5380. [PMID: ] - PMC - PubMed
Collier 2020 {published data only}
    1. Collier DA, Assennato SM, Warne B, Sithole N, Sharrocks K, Ritchie A, et al. Point of care nucleic acid testing for SARS-CoV-2 in hospitalized patients: a clinical validation trial and implementation study. Cell Reports Medicine 2020;1(5):100062. [PMID: ] - PMC - PubMed
Dao 2020 {published data only}
    1. Dao Thi VL, Herbst K, Boerner K, Meurer M, Kremer LPM, Kirrmaier D, et al. Screening for SARS-CoV-2 infections with colorimetric RT-LAMP and LAMP sequencing. medRxiv 2020;NA:1-28. [DOI: 10.1101/2020.05.05.20092288] - DOI
Davda 2020 {published data only}
    1. Davda JN, Frank K, Prakash S, Purohit G, Vijayashankar DP, Vedagiri D, et al. An inexpensive RT-PCR endpoint diagnostic assay for SARS-CoV-2 using nested PCR: direct assessment of detection efficiency of RT-qPCR tests and suitability for surveillance. bioRxiv 2020;NA:1-21. [DOI: 10.1101/2020.06.08.139477] - DOI
Deiana 2020 {published data only}
    1. Deiana M, Mori A, Piubelli C, Scarso S, Favarato M, Pomari E. Assessment of the direct quantitation of SARS-CoV-2 by droplet digital PCR. Scientific Reports 2020;10(1):18764. [PMID: ] - PMC - PubMed
De Puig 2021 {published data only}
    1. De Puig H, Lee RA, Najjar D, Tan X, Soeknsen LR, Angenent-Mari NM, et al. Minimally instrumented SHERLOCK (miSHERLOCK) for CRISPR-based point-of-care diagnosis of SARS-CoV-2 and emerging variants. Science Advances 2021;7(eabh2944):1-11. [DOI: 10.1126/sciadv.abh2944] - DOI - PMC - PubMed
Desai 2021 {published data only}
    1. Desai KT, Alfaro K, Mendoza L, Faron M, Mesich B, Maza M, et al. Multisite clinical validation of isothermal amplification-based SARS-CoV-2 detection assays using different sampling strategies. Microbiology Spectrum 2021;9(2):e0084621. [PMID: ] - PMC - PubMed
Dewhurst 2022 {published data only}
    1. Dewhurst RE, Heinrich T, Watt P, Ostergaard P, Marimon JM, Moreira M, et al. Validation of a rapid, saliva-based, and ultra-sensitive SARS-CoV-2 screening system for pandemic-scale infection surveillance. Scientific Reports 2022;12(1):5936. [PMID: ] - PMC - PubMed
Dierks 2021 {published data only}
    1. Dierks S, Bader O, Schwanbeck J, Groß U, Weig MS, Mese K, et al. Diagnosing SARS-CoV-2 with antigen testing, transcription-mediated amplification and real-time PCR. Journal of Clinical Medicine 2021;10(11):2404. [PMID: ] - PMC - PubMed
Dimke 2021 {published data only}
    1. Dimke H, Larsen SL, Skov MN, Larsen H, Hartmeyer GN, Moeller JB. Phenol-chloroform-based RNA purification for detection of SARS-CoV-2 by RT-qPCR: comparison with automated systems. PLoS One 2021;16(2):e0247524. [PMID: ] - PMC - PubMed
Ding 2020 {published data only}
    1. Ding X, Yin K, Li Z, Lalla RV, Ballesteros E, Sfeir MM, et al. Ultrasensitive and visual detection of SARS-CoV-2 using all-in-one dual CRISPR-Cas12a assay. Nature Communications 2020;11(1):4711. [PMID: ] - PMC - PubMed
Donato 2021 {published data only}
    1. Donato LJ, Trivedi VA, Stransky AM, Misra A, Pritt BS, Binnicker MJ, et al. Evaluation of the Cue Health point-of-care COVID-19 (SARS-CoV-2 nucleic acid amplification) test at a community drive through collection center. Diagnostic Microbiology and Infectious Disease 2021;100(1):115307. [PMID: ] - PMC - PubMed
Fasching 2022 {published data only}
    1. Fasching CL, Servellita V, McKay B, Nagesh V, Broughton JP, Sotomayor-Gonzalez A, et al. COVID-19 variant detection with a high-fidelity CRISPR-Cas12 enzyme. Journal of Clinical Microbiology 2022;60(7):e0026122. [PMID: ] - PMC - PubMed
Fernández‐Pittol 2020 {published data only}
    1. Fernández-Pittol M, Hurtado JC, Moreno-García E, Rubio E, Navarro M, Valiente M, et al. Assessment of the use and quick preparation of saliva for rapid microbiological diagnosis of COVID-19. bioRxiv 2020;NA:1-9. [DOI: 10.1101/2020.06.25.172734] - DOI
Figueiredo 2022 {published data only}
    1. Figueiredo D, Cascalheira A, Goncalves J. Rapid, multiplex detection of SARS-CoV-2 using isothermal amplification coupled with CRISPR-Cas12a. Scientific Reports 2022;NA:1-21. [PMID: ] - PMC - PubMed
Guan 2021 {published data only}
    1. Guan B, Frank KM, Maldonado JO, Beach M, Pelayo E, Warner BM, et al. Sensitive extraction-free SARS-CoV-2 RNA virus detection using a novel RNA preparation method. medRxiv 2021;NA:1-34. [DOI: 10.1101/2021.01.29.21250790] - DOI - PMC - PubMed
Guruceaga 2020 {published data only}
    1. Guruceaga X, Sierra A, Marino D, Santin I, Nieto-Garai JA, Bilbao JR, et al. Fast SARS-CoV-2 detection protocol based on RNA precipitation and RT-qPCR in nasopharyngeal swab samples. medRxiv 2020;NA:1-22. [DOI: 10.1101/2020.04.26.20081307] - DOI
Haq 2020 {published data only}
    1. Haq F, Sharif S, Khurshid A, Shabbir I, Salman M, Badar N, et al. Development optimization and validation of RT-LAMP based COVID-19 facility in Pakistan. bioRxiv 2020;NA:1-14. [PMID: 10.1101/2020.05.29.124123] - DOI
Hou 2020 {published data only}
    1. Hou T, Zeng W, Yang M, Chen W, Ren L, Ai J, et al. Development and evaluation of a CRISPR-based diagnostic for 2019-novel coronavirus. PLoS Pathogens 2020;16(8):e1008705. - PMC - PubMed
Hu 2020 {published data only}
    1. Hu X, Deng Q, Li J, Chen J, Wang Z, Zhang X, et al. Development and clinical application of a rapid and sensitive loop-mediated isothermal amplification test for SARS-CoV-2 infection. mSphere 2020;5(4):e00808-e00820. [PMID: ] - PMC - PubMed
Huang W 2020 {published data only}
    1. Huang W, Yu L, Wen D, Wei D, Sun Y, Zhao H, et al. A CRISPR-Cas12a-based specific enhancer for more sensitive detection of SARS-CoV-2 infection. EBioMedicine 2020;61:103036. [PMID: ] - PMC - PubMed
Huang WE 2020 {published data only}
    1. Huang WE, Lim B, Hsu CC, Xiong D, Wu W, Yu Y, et al. RT-LAMP for rapid diagnosis of coronavirus SARS-CoV-2. Microbial Biotechnology 2020;13(4):950-61. [PMID: ] - PMC - PubMed
Huang Z 2020 {published data only}
    1. Huang Z, Tian D, Liu Y, Lin Z, Lyon CJ, Lai W, et al. Ultra-sensitive and high-throughput CRISPR-powered COVID-19 diagnosis. Biosensors and Bioelectronics 2020;15(164):112316. [PMID: ] - PMC - PubMed
Iqbal 2022 {published data only}
    1. Iqbal BN, Arunasalam S, Divarathna MVM, Jabeer A, Sirisena P, Senaratne T, et al. Diagnostic utility and validation of a newly developed real time loop mediated isothermal amplification method for the detection of SARS CoV-2 infection. Journal of Clinical Virology Plus 2022;2(3):100081. [PMID: ] - PMC - PubMed
Israeli 2020 {published data only}
    1. Israeli O, Beth-Din A, Paran N, Stein D, Lazar S, Weiss S, et al. Evaluating the efficacy of RT-qPCR SARS-CoV-2 direct approaches in comparison to RNA extraction. bioRxiv 2020;NA:1-6. [DOI: 10.1101/2020.06.10.144196] - DOI - PMC - PubMed
Jacobson 2022 {published data only}
    1. Jacobson M, Hart C, Huen W, Suarez Guardado G, Villanueva A, Whitman J, et al. A rapid nucleic-acid-amplification-test-based, conditional-release-to-work policy for health care personnel with symptoms consistent with COVID-19. Journal of Occupational and Environmental Medicine 2022;65(2):125-7. [PMID: ] - PMC - PubMed
Joung 2020 {published data only}
    1. Joung J, Ladha A, Saito M, Kim NG, Woolley AE, Segel M, et al. Detection of SARS-CoV-2 with SHERLOCK One-Pot Testing. New England Journal of Medicine 2020;383(15):1492-4. [PMID: ] - PMC - PubMed
Karino 2021 {published data only}
    1. Karino M, Harada M, Yamada C, Fukuoka K, Sugo M, Hanada H, et al. Evaluation of the efficacy of LAMP-based SARS-CoV-2 detection with simple RNA extraction from nasopharyngeal swabs: a prospective observational study. PLoS One 2021;16(12):e0260732. [PMID: ] - PMC - PubMed
Kiran 2020 {published data only}
    1. Kiran U, Gokulan CG, Kuncha SK, Vedagiri D, Tallapaka KB, Mishra RK, et al. Improved and simplified diagnosis of Covid-19 using TE extraction from dry swabs. bioRxiv 2020;NA:1-13. [DOI: 10.1101/2020.05.31.126342] - DOI
Klein 2020 {published data only}
    1. Klein S, Muller TG, Khalid D, Sonntag-Buck V, Heuser AM, Glass B, et al. SARS-CoV-2 RNA extraction using magnetic beads for rapid large-scale testing by RT-qPCR and RT-LAMP. Viruses 2020;12(8):863. [PMID: ] - PMC - PubMed
Kuiper 2020 {published data only}
    1. Kuiper JWP, Baade T, Kremer M, Kranaster R, Irmisch L, Schuchmann M, et al. Detection of SARS-CoV-2 from raw patient samples by coupled high temperature reverse transcription and amplification. medRxiv 2020;NA:1-25. [DOI: 10.1101/2020.05.19.20103150] - DOI - PMC - PubMed
L'Helgouach 2020 {published data only}
    1. L'Helgouach N, Champigneux P, Santos-Schneider F, Molina L, Espeut J, Alali M, et al. EasyCOV: LAMP based rapid detection of SARS-CoV-2 in saliva. medRxiv 2020;NA:1-14. [DOI: 10.1101/2020.05.30.20117291] - DOI
Lamb 2020 {published data only}
    1. Lamb LE, Bartolone SN, Ward E, Chancellor MB. Rapid detection of novel coronavirus/Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2) by reverse transcription-loop-mediated isothermal amplification. PLoS One 2020;15(6):e0234682. [PMID: ] - PMC - PubMed
Lau 2020 {published data only}
    1. Lau YL, Ismail I, Mustapa NI, Lai MY, Tuan Soh TS, Hassan A, et al. Real-time reverse transcription loop-mediated isothermal amplification for rapid detection of SARS-CoV-2. PeerJ 2020;8:e9278. [PMID: ] - PMC - PubMed
Lee 2020 {published data only}
    1. Lee JYH, Best N, McAuley J, Porter JL, Seemann T, Schultz MB, et al. Validation of a single-step, single-tube reverse transcription loop-mediated isothermal amplification assay for rapid detection of SARS-CoV-2 RNA. Journal of Medical Microbiology 2020;69(9):1169-78. [PMID: ] - PMC - PubMed
Li J 2022 {published data only}
    1. Li J, Lin W, Du P, Liu W, Liu X, Yang C, et al. Comparison of reverse-transcription qPCR and droplet digital PCR for the detection of SARS-CoV-2 in clinical specimens of hospitalized patients. Diagnostic Microbiology and Infectious Disease 2022;103(2):115677. [PMID: ] - PMC - PubMed
Liu 2020 {published data only}
    1. Liu C, Shi Q, Peng M, Lu R, Li H, Cai Y, et al. Evaluation of droplet digital PCR for quantification of SARS-CoV-2 virus in discharged COVID-19 patients. Aging (Albany NY) 2020;12(21):20997-1003. [PMID: ] - PMC - PubMed
Liu X 2020 {published data only}
    1. Liu X, Feng J, Zhang Q, Guo D, Zhang L, Suo T, et al. Analytical comparisons of SARS-COV-2 detection by qRT-PCR and ddPCR with multiple primer/probe sets. Emerging Microbes & Infections 2020;9(1):1175-9. [PMID: ] - PMC - PubMed
Lu 2020 {published data only}
    1. Lu R, Wu X, Wan Z, Li Y, Jin X, Zhang C. A novel reverse transcription loop-mediated isothermal amplification method for rapid detection of SARS-CoV-2. International Journal of Molecular Sciences 2020;21(8):2826. [PMID: ] - PMC - PubMed
Lu 2022 {published data only}
    1. Lu R, Wang J, Li M, He J, Wang Y, Dong J, et al. Retrospective quantitative detection of SARS-CoV-2 by digital PCR showing high accuracy for low viral load specimens. Journal of Infection in Developing Countries 2022;16(1):10-5. [PMID: ] - PubMed
Malta 2021 {published data only}
    1. Malta FdM, Amgarten DE, Val FC, Santana RAF, Cervato MC, De Azevedo BMC, et al. Mass molecular testing for COVID19 using NGS-based technology and a highly scalable workflow. Science Reports 2021;11(1):7122. [PMID: ] - PMC - PubMed
Mancini 2020 {published data only}
    1. Mancini F, Barbanti F, Scaturro M, Errico G, Iacobino A, Bella A, et al. Laboratory management for SARS-CoV-2 detection: a user-friendly combination of the heat treatment approach and rt-Real-time PCR testing. Emerging Microbes & Infections 2020;9(1):1393-6. [PMID: ] - PMC - PubMed
Marchio 2021 {published data only}
    1. Marchio A, Batejat C, Vanhomwegen J, Feher M, Grassin Q, Chazal M, et al. ddPCR increases detection of SARS-CoV-2 RNA in patients with low viral loads. Archives of Virology 2021;166(9):2529-40. [PMID: ] - PMC - PubMed
Méndez 2021 {published data only}
    1. Méndez Tibambre ME, Rodríguez Parra ZJ, Portela Dussan DD, Bustamante Restrepo MF, Aristizábal Gutiérrez FA. Método LAMP como alternativa diagnóstica para la detección del virus SARS-CoV-2. Revista Colombiana de Ciencias Químico Farmacéuticas 2021;50(3):633-49.
Meza‐Robles 2020 {published data only}
    1. Meza-Robles C, Barajas-Saucedo CE, Tiburcio-Jimenez D, Mokay-Ramirez KA, Melnikov V, Rodriguez-Sanchez IP, et al. One-step nested RT-PCR for COVID-19 detection: a flexible, locally developed test for SARS-CoV2 nucleic acid detection. Journal of Infection in Developing Countries 2020;14(7):679-84. [PMID: ] - PubMed
Michel 2020 {published data only}
    1. Michel D, Danzer KM, Gross R, Conzelmann C, Muller JA, Freischmidt A, et al. Rapid, convenient and efficient kit-independent detection of SARS-CoV-2 RNA. Journal of Virological Methods 2020;286:113965. [PMID: ] - PMC - PubMed
Misra 2022 {published data only}
    1. Misra CS, Rangu SS, Phulsundar RD, Bindal G, Singh M, Shashidhar R, et al. An improved, simple and field-deployable CRISPR-Cas12a assay for the detection of SARS-CoV-2. Journal of Applied Microbiology 2022;133(4):2668-77. [PMID: ] - PubMed
Mohon 2020 {published data only}
    1. Mohon AN, Oberding L, Hundt J, Van Marle G, Pabbaraju K, Berenger BM, et al. Optimization and clinical validation of dual-target RT-LAMP for SARS-CoV-2. Journal of Virological Methods 2020;286:113972. [PMID: ] - PMC - PubMed
Mokhtar 2020 {published data only}
    1. Mokhtar KM. Improved COVID-19 testing by extraction-free SARS-CoV-2 RT-PCR. Electronic Journal of the International Federation of Clinical Chemistry and Laboratory Medicine 2020;31(4):362-8. [PMID: ] - PMC - PubMed
Moses 2020 {published data only}
    1. Moses SE, Warren C, Robinson P, Curtis J, Asquith S, Holme J, et al. Endpoint PCR detection of Sars-CoV-2 RNA. medRxiv 2020;NA:1-16. [DOI: 10.1101/2020.07.21.20158337] - DOI
Motohashi 2022 {published data only}
    1. Motohashi A, Yamamoto K, Mezaki K, Moriya A, Kurokawa M, Oki H, et al. Negative results of nucleic acid amplification tests for SARS-CoV-2 in clinical practice may vary among six molecular assays in patients with COVID-19. Japanese Journal of Infectious Diseases 2022;75(3):309-13. [PMID: ] - PubMed
Naranbat 2022 {published data only}
    1. Naranbat D, Schneider L, Kantor R, Beckwith CG, Bazerman L, Gillani F, et al. DirectDetect SARS-CoV-2 Direct Real-Time RT-PCR study using patient samples. ACS Omega 2022;7(6):4945-55. [PMID: ] - PMC - PubMed
Nassir 2020 {published data only}
    1. Nassir AA, Baptiste MJ, Mwikarago I, Habimana MR, Ndinkabandi J, Murangwa A, et al. RPA-Based method for the detection of SARS-CoV2. medRxiv 2020;NA:1-23. [DOI: 10.1101/2020.09.17.20196402] - DOI
Patchsung 2020 {published data only}
    1. Patchsung M, Jantarug K, Pattama A, Aphicho K, Suraritdechachai S, Meesawat P, et al. Clinical validation of a Cas13-based assay for the detection of SARS-CoV-2 RNA. Nature Biomedical Engineering 2020;4(12):1140-9. [PMID: ] - PubMed
Pierri 2022 {published data only}
    1. Pierri B, Mancusi A, Proroga YTR, Capuano F, Cerino P, Girardi S, et al. SARS-CoV-2 detection in nasopharyngeal swabs: performance characteristics of a real-time RT-qPCR and a droplet digital RT-PCR assay based on the exonuclease region (ORF1b, nsp 14). Journal of Virology Methods 2022;300:114420. [PMID: ] - PMC - PubMed
Qian 2020 {published data only}
    1. Qian J, Boswell SA, Chidley C, Lu ZX, Pettit ME, Gaudio BL, et al. An enhanced isothermal amplification assay for viral detection. Nature Communications 2020;11(1):5920. [PMID: ] - PMC - PubMed
Ratcliff 2020 {published data only}
    1. Ratcliff J, Nguyen D, Andersson M, Simmonds P. Evaluation of different PCR assay formats for sensitive and specific detection of SARS-CoV-2 RNA. bioRxiv 2020;NA:1-16. [DOI: 10.1101/2020.06.24.168013] - DOI
Rauch 2020 {published data only}
    1. Rauch JN, Valois E, Ponce-Rojas JC, Aralis Z, Lach RS, Zappa F, et al. CRISPR-based and RT-qPCR surveillance of SARS-CoV-2 in asymptomatic individuals uncovers a shift in viral prevalence among a university population. medRxiv 2020;NA:1-21. [DOI: 10.1101/2020.08.06.20169771] - DOI
Rauch 2021 {published data only}
    1. Rauch JN, Valois E, Ponce-Rojas JC, Aralis Z, Lach RS, Zappa F, et al. Comparison of severe acute respiratory syndrome coronavirus 2 screening using reverse transcriptase-quantitative polymerase chain reaction or CRISPR-based assays in asymptomatic college students. JAMA Network Open 2021;4(2):e2037129. [PMID: ] - PMC - PubMed
Rebbapragada 2022 {published data only}
    1. Rebbapragada A, Cariazo L, Elchuk D, Abdelrahman H, Pham D, Joseph N, et al. Performance of the Cue COVID-19 Molecular Test for point of care: insights from a multi-site clinic service model. medRxiv 2022;NA:1-25. [DOI: 10.1101/2022.08.12.22278567] - DOI - PMC - PubMed
Rodriguez‐Manzano 2021 {published data only}
    1. Rodriguez-Manzano J, Malpartida-Cardenas K, Moser N, Pennisi I, Cavuto M, Miglietta L, et al. Handheld point-of-care system for rapid detection of SARS-CoV-2 extracted RNA in under 20 min. ACS Central Science 2021;7(2):307-17. [PMID: ] - PMC - PubMed
Sahajpal 2020 {published data only}
    1. Sahajpal NS, Mondal AK, Njau A, Ananth S, Kothandaraman A, Hegde M, et al. Clinical validation of innovative, low cost, kit-free, RNA processing protocol for RT-PCR based COVID-19 testing. medRxiv 2020;NA:1-12. [DOI: 10.1101/2020.07.28.20163626] - DOI
Saluzzo 2021 {published data only}
    1. Saluzzo F, Mantegani P, Poletti de Chaurand V, Cugnata F, Rovere-Querini P, Cilla M, et al. Saliva molecular testing for SARS-CoV-2: simplifying the diagnosis without losing accuracy. European Respiratory Journal 2021;58(6):2102099. [PMID: ] - PMC - PubMed
Schellenberg 2020 {published data only}
    1. Schellenberg JJ, Ormond M, Keynan Y. Extraction-free RT-LAMP to detect SARS-CoV-2 is less sensitive but highly specific compared to standard RT-PCR in 101 samples. medRxiv 2020;NA:1-17. [DOI: 10.1101/2020.12.07.20239558] - DOI - PMC - PubMed
Schermer 2020 {published data only}
    1. Schermer B, Fabretti F, Damagnez M, Di Cristanziano V, Heger E, Arjune S, et al. Rapid SARS-CoV-2 testing in primary material based on a novel multiplex RT-LAMP assay. PLoS One 2020;15(11):e0238612. [PMID: ] - PMC - PubMed
Smyrlaki 2020 {published data only}
    1. Smyrlaki I, Ekman M, Lentini A, Rufino de Sousa N, Papanicolaou N, Vondracek M, et al. Massive and rapid COVID-19 testing is feasible by extraction-free SARS-CoV-2 RT-PCR. Nature Communications 2020;11(1):4812. [PMID: ] - PMC - PubMed
Song 2021 {published data only}
    1. Song J, El-Tholoth M, Li Y, Graham-Wooten J, Liang Y, Li J, et al. Single- and two-stage, closed-tube, point-of-care, molecular detection of SARS-CoV-2. Analytical Chemistry 2021;93(38):13063. [PMID: ] - PMC - PubMed
Suo 2020 {published data only}
    1. Suo T, Liu X, Feng J, Guo M, Hu W, Guo D, et al. DdPCR: a more accurate tool for SARS-CoV-2 detection in low viral load specimens. Emerging Microbes & Infections 2020;9(1):1259-68. [PMID: ] - PMC - PubMed
Tan 2022 {published data only}
    1. Tan SYH, Kwek SYM, Low H, Pang YLJ. Absolute quantification of SARS-CoV-2 with Clarity Plus digital PCR. Methods 2022;201:26-33. [PMID: ] - PMC - PubMed
Toppings 2021 {published data only}
    1. Toppings NB, Mohon AN, Lee Y, Kumar H, Lee D, Kapoor R, et al. A rapid near-patient detection system for SARS-CoV-2 using saliva. Scientific Reports 2021;11(1):13378. [PMID: ] - PMC - PubMed
Ulloa 2020 {published data only}
    1. Ulloa S, Bravo C, Parra B, Ramirez E, Acevedo A, Fasce R, et al. A simple method for SARS-CoV-2 detection by rRT-PCR without the use of a commercial RNA extraction kit. Journal of Virological Methods 2020;285:113960. [PMID: ] - PMC - PubMed
Van Nguyen 2022 {published data only}
    1. Nguyen Van JC, Pilmis B, Khaterchi A, Billuart O, De Ponfilly GP, Le Monnier A, et al. Organizational impact of an ID NOW COVID-19 point-of-care testing for SARS-CoV2 detection in a maternity ward. medRxiv 2022;NA:1-15. [DOI: 10.1101/2022.08.29.22279161] - DOI
Van Poelvoorde 2021 {published data only}
    1. Van Poelvoorde LAE, Gand M, Fraiture MA, De Keersmaecker SCJ, Verhaegen B, Van Hoorde K, et al. Strategy to develop and evaluate a multiplex RT-ddPCR in response to SARS-CoV-2 genomic evolution. Current Issues in Molecular Biology 2021;43(3):1937-49. [PMID: ] - PMC - PubMed
Wang 2020 {published data only}
    1. Wang D, He S, Wang X, Yan Y, Liu J, Wu S, et al. Rapid lateral flow immunoassay for the fluorescence detection of SARS-CoV-2 RNA. Nature Biomedical Engineering 2020;4(12):1150-8. [PMID: ] - PubMed
Wang J 2020a {published data only}
    1. Wang J, Cai K, Zhang R, He X, Shen X, Liu J, et al. Novel one-step single-tube nested quantitative real-time PCR assay for highly sensitive detection of SARS-CoV-2. Analytical Chemistry 2020;92(13):9399-404. [PMID: ] - PubMed
Wang J 2020b {published data only}
    1. Wang J, Cai K, He X, Shen X, Liu J, Xu J, et al. A multiple center clinical evaluation of an ultra-fast single-tube assay for SARS-CoV-2 RNA. Clinical Microbiology and Infection 2020;26(8):1076-81. [PMID: ] - PMC - PubMed
Wang M 2020 {published data only}
    1. Wang M, Fu A, Hu B, Tong Y, Liu R, Liu Z, et al. Nanopore targeted sequencing for the accurate and comprehensive detection of SARS-CoV-2 and other respiratory viruses. Micro and Nano: No Small Matter 2020;16(32):e2002169. [PMID: ] - PMC - PubMed
Wang X 2020 {published data only}
    1. Wang X, Zhong M, Liu Y, Ma P, Dang L, Meng Q, et al. Rapid and sensitive detection of COVID-19 using CRISPR/Cas12a-based detection with naked eye readout, CRISPR/Cas12a-NER. Science Bulletin (Beijing) 2020;65(17):1436-9. [PMID: ] - PMC - PubMed
Wei F 2020 {published data only}
    1. Wei F, Yu Y, Hu Z, Wang R, Guo X, Jin H, et al. Laboratory validation of an RNA/DNA hybrid tagmentation based mNGS workflow on SARS-CoV-2 and other respiratory RNA viruses detection. medRxiv 2020;NA:1-30. [DOI: 10.1101/2020.05.12.20099754] - DOI
Wei S 2021 {published data only}
    1. Wei S, Kohl E, Djandji A, Morgan S, Whittier S, Mansukhani M, et al. Direct diagnostic testing of SARS-CoV-2 without the need for prior RNA extraction. Scientific Reports 2021;11(1):2402. [PMID: ] - PMC - PubMed
Woo 2020 {published data only}
    1. Woo CH, Jang S, Shin G, Jung GY, Lee JW. Sensitive fluorescence detection of SARS-CoV-2 RNA in clinical samples via one-pot isothermal ligation and transcription. Nature Biomedical Engineering 2020;4(12):1168-79. [PMID: ] - PMC - PubMed
Wozniak 2020 {published data only}
    1. Wozniak A, Cerda A, Ibarra-Henríquez C, Sebastian V, Armijo G, Lamig L, et al. A simple RNA preparation method for SARS-CoV-2 detection by RT-qPCR. Scientific Reports 2020;10(1):16608. [PMID: ] - PMC - PubMed
Wu T 2020 {published data only}
    1. Wu T, Ge Y, Zhao K, Zhu X, Chen Y, Wu B, et al. A reverse-transcription recombinase-aided amplification assay for the rapid detection of N gene of severe acute respiratory syndrome coronavirus 2(SARS-CoV-2). Virology 2020;549:1-4. [PMID: ] - PMC - PubMed
Xing 2020 {published data only}
    1. Xing W, Liu Y, Wang H, Li S, Lin Y, Chen L, et al. A hgh-throughput, multi-index isothermal amplification platform for rapid detection of 19 types of common respiratory viruses including SARS-CoV-2. Engineering (Beijing) 2020;6(10):1130-40. [PMID: ] - PMC - PubMed
Xue G 2020 {published data only}
    1. Xue G, Li S, Zhang W, Du B, Cui J, Yan C, et al. Reverse-transcription recombinase-aided amplification assay for rapid detection of the 2019 novel coronavirus (SARS-CoV-2). Analytical Chemistry 2020;92(14):9699-705. [PMID: ] - PubMed
Yan 2020 {published data only}
    1. Yan C, Cui J, Huang L, Du B, Chen L, Xue G, et al. Rapid and visual detection of 2019 novel coronavirus (SARS-CoV-2) by a reverse transcription loop-mediated isothermal amplification assay. Clinical Microbiology and Infection 2020;26(6):773-9. [PMID: ] - PMC - PubMed
Yip 2020 {published data only}
    1. Yip CC, Sridhar S, Leung KH, Ng AC, Chan KH, Chan JF, et al. Development and evaluation of novel and highly sensitive single-tube nested real-time RT-PCR assays for SARS-CoV-2 detection. International Journal of Molecular Sciences 2020;21(16):5674. [PMID: ] - PMC - PubMed
Yoshimi 2020 {published data only}
    1. Yoshimi K, Takeshita K, Yamayoshi S, Shibumura S, Yamauchi Y, Yamamoto M, et al. CRISPR-Cas3-based diagnostics for SARS-CoV-2 and influenza virus. iScience 2022;25(2):103830. [DOI: 10.1016/j.isci.2022.103830] - DOI - PMC - PubMed
    1. Yoshimi K, Takeshita K, Yamayoshi S, Shibumura S, Yamauchi Y, Yamamoto M, et al. Rapid and accurate detection of novel coronavirus SARS-CoV-2 using CRISPR-Cas3. medRxiv 2020;NA:1-30. [DOI: 10.1101/2020.06.02.20119875] - DOI
Zhang 2021 {published data only}
    1. Zhang Y, Tanner NA. Development of multiplexed reverse-transcription loop-mediated isothermal amplification for detection of SARS-CoV-2 and influenza viral RNA. Biotechniques 2021;70(3):167-74. [PMID: ] - PMC - PubMed
Zhu X 2020 {published data only}
    1. Zhu X, Wang X, Han L, Chen T, Wang L, Li H, et al. Multiplex reverse transcription loop-mediated isothermal amplification combined with nanoparticle-based lateral flow biosensor for the diagnosis of COVID-19. Biosensors and Bioelectronics 2020;166:112437. [PMID: ] - PMC - PubMed

References to ongoing studies

ChiCTR2000029810 {unpublished data only}
    1. ChiCTR2000029810. Clinical study of a novel high sensitivity nucleic acid assay for novel coronavirus pneumonia (COVID-19) based on CRISPR-cas protein [Development and application of a novel high sensitivity nucleic acid assay for novel coronavirus pneumonia (COVID-19) based on CRISPR-cas protein ]. chictr.org.cn/showproj.aspx?proj=49407 (first received 14 February 2020).
CTRI/2021/02/030950 {unpublished data only}
    1. CTRI/2021/02/030950. A new test to diagnose COVID-19 [Validation of the TataMD CHECK CRISPR SARS-CoV-2 test 1.0 for the diagnosis of COVID-19 ]. ctri.nic.in/Clinicaltrials/pmaindet2.php?trialid=52209 (first received 03 February 2021).
Fokam 2022 {published data only}
    1. Fokam J, Alteri C, Colagrossi L, Genevieve AM, Takou D, Ndjolo A, et al. Diagnostic performance of molecular and serological tests of SARS-CoV-2 on well-characterised specimens from COVID-19 individuals: the EDCTP "PERFECT-study" protocol (RIA2020EF-3000). PLoS One 2022;17(9):e0273818. [PMID: ] - PMC - PubMed
NCT04367545 {unpublished data only}
    1. NCT04367545. Development of a molecular diagnostic strategy for SARS-CoV2 based on saliva in the context of the COVID-19 pandemic (MolCOVID) [Development of a molecular diagnostic strategy for SARS-CoV2 based on saliva in the context of the COVID-19 pandemic]. clinicaltrials.gov/ct2/show/NCT04367545 (first received 29 April 2020).
NCT04510454 {unpublished data only}
    1. NCT04510454. Evaluation of a ddPCR technology for the SARS-CoV-2 detection in symptomatic patients with suspicion of COVID-19 (ONCOVID-21) [Evaluation of a ddPCR technology for the SARS-CoV-2 detection in symptomatic patients with suspicion of COVID-19]. clinicaltrials.gov/ct2/show/NCT04510454 (first received 12 August 2020).
NCT04625257 {unpublished data only}
    1. NCT04625257. COVID-19 in Baselland: validation of simple and accurate tests for COVID-19 detection, monitoring and tracing (ACCURATE-BL-COVID-19) [COVID-19 in Baselland: validation of simple and accurate tests for COVID-19 detection, monitoring and tracing (ACCURATE-BL-COVID-19)]. clinicaltrials.gov/ct2/show/NCT04625257 (first received 12 November 2020).

Additional references

Arevalo‐Rodriguez 2020
    1. Arevalo-Rodriguez I, Buitrago-Garcia D, Simancas-Racines D, Zambrano-Achig P, Del Campo R, Ciapponi A, et al. False-negative results of initial RT-PCR assays for COVID-19: a systematic review. PLoS One 2020;15(12):e0242958. [PMID: ] - PMC - PubMed
Behera 2021
    1. Behera BC, Mishra RR, Thatoi H. Recent biotechnological tools for diagnosis of corona virus disease: a review. Biotechnology Progress 2021;37(1):e3078. [PMID: ] - PubMed
Bhatt 2022
    1. Akansha B, Singh BG, Munindra R, Saif H, Zeeshan F. Diagnostic efficiency of RT-LAMP integrated CRISPR-Cas technique for COVID-19: a systematic review and meta-analysis. Pathogens and Global Health 2022;116(7):410-20. [PMID: ] - PMC - PubMed
Bolotin 2005
    1. Bolotin A, Quinquis B, Sorokin A, Ehrlich SD. Clustered regularly interspaced short palindrome repeats (CRISPRs) have spacers of extrachromosomal origin. Microbiology 2005;151(8):2551-61. [PMID: ] - PubMed
Bossuyt 2015
    1. Bossuyt PM, Reitsma JB, Bruns DE, Gatsonis CA, Glasziou PP, Irwig L. STARD 2015: an updated list of essential items for reporting diagnostic accuracy studies. British Medical Journal 2015;351:h5527. [PMID: ] - PMC - PubMed
Bustin 2005
    1. Bustin SA, Mueller R. Real-time reverse transcription PCR (qRT-PCR) and its potential use in clinical diagnosis. Clinical Science (London) 2005;109:365-79. [PMID: ] - PubMed
Cartwright 1994
    1. Cartwright CP. Techniques and diagnostic applications of in vitro nucleic-acid amplification. Clinical Microbiology Newsletter 1994;16:33-40. [DOI: 10.1016/0196-4399(94)90039-6] - DOI
Caruana 2020
    1. Caruana G, Croxatto A, Coste AT, Opota O, Lamoth F, Jaton K, et al. Diagnostic strategies for SARS-CoV-2 infection and interpretation of microbiological results. Clinical Microbiology and Infection 2020;26(9):1178-82. [PMID: ] - PMC - PubMed
Castellanos‐Gonzalez 2021
    1. Castellanos-Gonzalez A, Shelite TR, Lloyd N, Sadiqova A, Ping R, Williams-Bouyer N, et al. Direct RT-PCR amplification of SARS-CoV-2 from clinical samples using a concentrated viral lysis-amplification buffer prepared with IGEPAL-630. Scientific Reports 2021;11(1):14204. [PMID: ] - PMC - PubMed
Clopper 1934
    1. Clopper CJ, Pearson ES. The use of confidence or fiducial limits illustrated in the case of the binomial. Biometrika 1934;26(4):404-413.
Corman 2020
    1. Corman VM, Landt O, Kaiser M, Molenkamp R, Meijer A, Chu DKW, et al. Detection of 2019 novel coronavirus (2019-nCoV) by real-time RT-PCR. Eurosurveillance 2020;25(3):2000045. [PMID: ] - PMC - PubMed
Covidence [Computer program]
    1. Covidence. Veritas Health Innovation, (accessed 20 October 2021). Available at covidence.org.
Darnell 2004
    1. Darnell ME, Subbarao K, Feinstone SM, Taylor DR. Inactivation of the coronavirus that induces severe acute respiratory syndrome, SARS-CoV. Journal of Virology Methods 2004;121(1):85-91. [PMID: ] - PMC - PubMed
Deeks 2020
    1. Deeks JJ, Dinnes J, Takwoingi Y, Davenport C, Leeflang MMG, Spijker R, et al. Diagnosis of SARS‐CoV‐2 infection and COVID‐19: accuracy of signs and symptoms; molecular, antigen, and antibody tests; and routine laboratory markers. Cochrane Database of Systematic Reviews 2020, Issue 6. Art. No: CD013596. [DOI: 10.1002/14651858.CD013596] - DOI
Deeks 2020a
    1. Deeks JJ, Dinnes J, Takwoingi Y, Davenport C, Spijker R, Taylor-Phillips S, et al. Antibody tests for identification of current and past infection with SARS-CoV-2. Cochrane Database of Systematic Reviews 2020, Issue 6. Art. No: CD013652. [DOI: 10.1002/14651858.CD013652] [PMID: ] - DOI - PMC - PubMed
Dinnes 2021
    1. Dinnes J, Deeks JJ, Berhane S, Taylor M, Adriano A, Davenport C, et al. Rapid, point-of-care antigen and molecular-based tests for diagnosis of SARS-CoV-2 infection. Cochrane Database of Systematic Reviews 2021, Issue 3. Art. No: CD013705. [DOI: 10.1002/14651858.CD013705] [PMID: ] - DOI - PMC - PubMed
Dinnes 2022
    1. Dinnes J, Sharma P, Berhane S, Van Wyk SS, Nyaaba N, Domen J, et al. Rapid, point‐of‐care antigen tests for diagnosis of SARS‐CoV‐2 infection. Cochrane Database of Systematic Reviews 2022, Issue 7. Art. No: CD013705. [DOI: 10.1002/14651858.CD013705.pub3] [PMID: ] - DOI - PMC - PubMed
Dorlass 2020
    1. Dorlass EG, Monteiro CO, Viana AO, Soares CP, Machado RRG, Thomazelli LM, et al. Lower cost alternatives for molecular diagnosis of COVID-19: conventional RT-PCR and SYBR Green-based RT-qPCR. Brazilian Journal of Microbiology 2020;51(3):1117-23. [DOI: 10.1007/s42770-020-00347-5] - DOI - PMC - PubMed
El Jaddaoui 2021
    1. El Jaddaoui I, Allali M, Raoui S, Sehli S, Habib N, Chaouni B, et al. A review on current diagnostic techniques for COVID-19. Expert Review of Molecular Diagnostics 2021;21(2):141-60. [PMID: ] - PubMed
Esbin 2020
    1. Esbin MN, Whitney ON, Chong S, Maurer A, Darzacq X, Tjian R. Overcoming the bottleneck to widespread testing: a rapid review of nucleic acid testing approaches for COVID-19 detection. RNA 2020;26(7):771-83. [PMID: ] - PMC - PubMed
EUnetHTA 2020
    1. EUnetHTA RCRC02 Authoring Team. The diagnostic accuracy of molecular methods that detect the presence of the SARS-CoV-2 virus in people with suspected COVID-19. www.eunethta.eu/wp-content/uploads/2021/03/Project_Plan_RCROT02_Molecula... (accessed prior to 19 Sept 2024).
Fox 2022
    1. Fox T, Geppert J, Dinnes J, Scandrett K, Bigio J, Sulis G, et al. Antibody tests for identification of current and past infection with SARS‐CoV‐2. Cochrane Database of Systematic Reviews 2022, Issue 11. Art. No: CD013652. [DOI: 10.1002/14651858.CD013652.pub2] [PMID: ] - DOI - PMC - PubMed
Fraga 2014
    1. Fraga D, Meulia T, Fenster S. Real-time PCR. Current Protocols Essential Laboratory Techniques 2014;8(1):10.3.1-10.3.40. [DOI: 10.1002/9780470089941.et1003s08] - DOI
Freeman 1999
    1. Freeman WM, Walker SJ, Vrana KE. Quantitative RT-PCR: pitfalls and potential. BioTechniques 1999;26(1):112-25. [DOI: 10.2144/99261rv01] - DOI - PubMed
Ganbaatar 2021
    1. Ganbaatar U, Liu C. CRISPR-Based COVID-19 testing: toward next-generation point-of-care diagnostics. Frontiers in Cellular and Infection Microbiology 2021;11:663949. [DOI: ] - PMC - PubMed
Gibson 1996
    1. Gibson UEM, Heid CA, Williams PM. A novel method for real time quantitative RT-PCR. Genome Research 1996;6:995-1001. [PMID: ] - PubMed
Healy 2021
    1. Healy B, Khan A, Metezai H, Blyth I, Asad H. The impact of false positive COVID-19 results in an area of low prevalence. Clinical Medicine (London) 2021;21(1):e54-6. [PMID: ] - PMC - PubMed
Hill 2001
    1. Hill CS. Molecular diagnostic testing for infectious diseases using TMA technology. Expert Review of Molecular Diagnostics 2001;1(4):445-55. [PMID: ] - PubMed
Hille 2018
    1. Hille F, Richter H, Wong SP, Bratovič M, Ressel S, Charpentier E. The biology of CRISPR-Cas: backward and forward. Cell 2018;172(6):1239-59. [PMID: ] - PubMed
Hindson 2013
    1. Hindson CM, Chevillet JR, Briggs HA, Gallichotte EN, Ruf IK, Hindson BJ, et al. Absolute quantification by droplet digital PCR versus analog real-time PCR. Nature Methods 2013;10(10):1003-5. [PMID: ] - PMC - PubMed
Huggett 2021
    1. Huggett JF, Moran-Gilad J, Lee JE. COVID-19 new diagnostics development: novel detection methods for SARS-CoV-2 infection and considerations for their translation to routine use. Current Opinion in Pulmonar Medicine 2021;27(3):155-62. [PMID: ] - PubMed
Jaffe 2001
    1. Jaffe RI, Lane JD, Bates CW. Real-time identification of Pseudomonas aeruginosa direct from clinical samples using a rapid extraction method and polymerase chain reaction (PCR). J Clin Lab Anal 2001;15(3):131-7. [DOI: 10.1002/jcla.1016] - DOI - PMC - PubMed
James 2015
    1. James A, Macdonald J. Recombinase polymerase amplification: emergence as a critical molecular technology for rapid, low-resource diagnostics. Expert Review of Molecular Diagnostics 2015;15(11):1475-89. [PMID: ] - PubMed
James 2020
    1. James AS, Alawneh JI. COVID-19 infection diagnosis: potential impact of isothermal amplification technology to reduce community transmission of SARS-CoV-2. Diagnostics (Basel) 2020;10(6):399. [PMID: ] - PMC - PubMed
Jarvis 2021
    1. Jarvis KF, Kelley JB. Temporal dynamics of viral load and false negative rate influence the levels of testing necessary to combat COVID-19 spread. Scientific Reports 2021;11(1):9221. [DOI: 10.1038/s41598-021-88498-9] - DOI - PMC - PubMed
Kelly‐Cirino 2019
    1. Kelly-Cirino C, Mazzola LT, Chua A, Oxenford CJ, Van Kerkhove MD. An updated roadmap for MERS-CoV research and product development: focus on diagnostics. BMJ Global Health 2019;4(Suppl 2):e001105. [PMID: ] - PMC - PubMed
Khare 2021
    1. Khare S, Gurry C, Freitas L, Schultz MB, Bach G, Diallo A, et al. GISAID's role in pandemic response. China CDC Wkly 2021;3(49):1049-51. - PMC - PubMed
Kucirka 2020
    1. Kucirka LM, Lauer SA, Laeyendecker O, Boon D, Lessler J. Variation in false-negative rate of reverse transcriptase polymerase chain reaction-based SARS-CoV-2 tests by time since exposure. Annals of Internal Medicine 2020;173(4):262-7. [PMID: ] - PMC - PubMed
Kwoh 1990
    1. Kwoh DY, Kwoh TJ. Target amplification systems in nucleic acid-based diagnostic approaches. American Biotechnology Laboratory 1990;8(13):14-25. [PMID: ] - PubMed
Lai 2021
    1. Lai CKC, Lam W. Laboratory testing for the diagnosis of COVID-19. Biochemical and Biophysical Research Communications 2021;538:226-30. [PMID: ] - PMC - PubMed
Leeflang 2013
    1. Leeflang MM, Rutjes AW, Reitsma JB, Hooft L, Bossuyt PM. Variation of a test's sensitivity and specificity with disease prevalence. Canadian Medical Association Journal 2013;185(11):E537-44. [PMID: ] - PMC - PubMed
Li 2018
    1. Li H, Bai R, Zhao Z, Tao L, Ma M, Ji Z, et al. Application of droplet digital PCR to detect the pathogens of infectious diseases. Bioscience Reports 2018;38(6):BSR20181170. [PMID: ] - PMC - PubMed
Li 2018a
    1. Li J, Macdonald J, Von Stetten F. Review: a comprehensive summary of a decade development of the recombinase polymerase amplification. Analyst 2018;144(1):31-67. [PMID: ] - PubMed
Li 2019
    1. Li Y, Li S, Wang J, Liu G. CRISPR/Cas systems towards next-generation biosensing. Trends in Biotechnology 2019;37(7):730-43. [PMID: ] - PubMed
Mackay 2004
    1. Mackay IM. Real-time PCR in the microbiology laboratory. Clinical Microbiology and Infection 2004;10:190-212. [PMID: ] - PubMed
Manoj 2016
    1. Manoj P. Droplet digital PCR technology promises new applications and research areas. Mitochondrial DNA Part A 2016;27(1):742-6. [PMID: ] - PubMed
Mayers 2020
    1. Mayers C, Baker K. Impact of false positives and negatives. www.gov.uk/government/publications/gos-impact-of-false-positives-and-neg... (accessed prior to 19 Sept 2024). [assets.publishing.service.gov.uk/government/uploads/system/uploads/attac...
Mitchell 2020
    1. Mitchell SL, St George K, Rhoads DD, Butler-Wu SM, Dharmarha V, McNult P, et al. Understanding, verifying, and implementing emergency use authorization molecular diagnostics for the detection of SARS-CoV-2 RNA. Journal of Clinical Microbiology 2020;58(8):e00796-20. [PMID: ] - PMC - PubMed
Morrison 1998
    1. Morrison TB, Weis JJ, Wittwer CT. Quantification of low-copy transcripts by continuous SYBR Green I monitoring during amplification. Biotechniques 1998;24:954-62. [PMID: ] - PubMed
Mullis 1986
    1. Mullis K, Faloona F, Scharf S, Saiki R, Horn G. Specific enzymatic amplification of DNA in vitro: the polymerase chain reaction. Cold Spring Harbor Symposia on Quantitative Biology 1986;51(1):263-73. [PMID: ] - PubMed
Ngo 2017
    1. Ngo KA, Jones SA, Church TM, Fuschino ME, George KSt, Lamson DM, et al. Unreliable inactivation of viruses by commonly used lysis buffers. Applied Biosafety 2017;22(2):56-9. [DOI: 10.1177/1535676017703383] - DOI
Notomi 2000
    1. Notomi T, Okayama H, Masubuchi H, Yonekawa T, Watanabe K, Amino N, et al. Loop-mediated isothermal amplification of DNA. Nucleic Acids Research 2000;28(12):E63. [PMID: ] - PMC - PubMed
Nyaruaba 2019
    1. Nyaruaba R, Mwaliko C, Kering KK, Wei H. Droplet digital PCR applications in the tuberculosis world. Tuberculosis 2019;117:85-92. [PMID: ] - PubMed
Ortiz‐Prado 2020
    1. Ortiz-Prado E, Simbaña-Rivera K, Gómez- Barreno L, Rubio-Neira M, Guaman LP, Kyriakidis NC, et al. Clinical, molecular, and epidemiological characterization of the SARS-CoV-2 virus and the Coronavirus Disease 2019 (COVID-19), a comprehensive literature review. Diagnostic Microbiology and Infectious Disease 2020;98(1):115094. [PMID: ] - PMC - PubMed
Piepenburg 2006
    1. Piepenburg O, Williams CH, Stemple DL, Armes NA. DNA detection using recombination proteins. PLoS Biology 2006;4(7):e204. [PMID: ] - PMC - PubMed
Plana 2022
    1. Plana MN, Arevalo-Rodriguez I, Fernández-García S, Soto J, Fabregate M, Pérez T, et al. Meta-DiSc 2.0: a web application for meta-analysis of diagnostic test accuracy data. BMC Medical Research Methodology 2022;22(1):306. - PMC - PubMed
Qi 2020
    1. Qi C, Zhenyun H, Fujing M, Hua P, Hongmei C, Xing L. Diagnostic technologies for COVID-19: a review. RSC Advances 2020;10(58):35257-64. - PMC - PubMed
Rutjes 2007
    1. Rutjes AW, Reitsma JB, Coomarasamy A, Khan KS, Bossuyt PM. Evaluation of diagnostic tests when there is no gold standard. A review of methods. Health Technology Assessment 2007;11(50):iii, ix-51. [PMID: ] - PubMed
Safiabadi 2021
    1. Safiabadi Tali SH, LeBlanc JJ, Sadiq Z, Oyewunmi OD, Camargo C, Nikpour B, et al. Tools and techniques for severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2)/COVID-19 detection. Clinical Microbiology Reviews 2021;34(3):e00228-20. [PMID: ] - PMC - PubMed
Saiki 1985
    1. Saiki RK, Scharf S, Faloona F, Mullis KB, Horn GT, Erlich HA, et al. Enzymatic amplification of beta-globin genomic sequences and restriction site analysis for diagnosis of sickle cell anemia. Biotechnology 1985;24:476-80. [PMID: ] - PubMed
Struyf 2022
    1. Struyf T, Deeks JJ, Dinnes J, Takwoingi Y, Davenport C, Leeflang MMG, et al. Signs and symptoms to determine if a patient presenting in primary care or hospital outpatient settings has COVID‐19. Cochrane Database of Systematic Reviews 2022, Issue 5. Art. No: CD013665. [DOI: 10.1002/14651858.CD013665.pub3] - DOI - PMC - PubMed
Subali 2021
    1. Subali AD, Wiyono L. Reverse transcriptase loop mediated isothermal amplification (RT-LAMP) for COVID-19 diagnosis: a systematic review and meta-analysis. Pathogens and Global Health 2021;6:1-11. [PMID: ] - PMC - PubMed
Sykes 1992
    1. Sykes PJ, Neoh SH, Brisco MJ, Hughes E, Condon J, Morley AA. Quantitation of targets for PCR by use of limiting dilution. Biotechniques 1992;13(3):444-9. [PMID: ] - PubMed
Takwoingi 2023
    1. Takwoingi Y, Dendukuri N, Schiller I, Rücker G, Jones HE, Partlett C, et al. Chapter 10: Undertaking meta-analysis. In: Deeks, JJ, Bossuyt, PM, Leeflang, MM, Takwoingi Y, editors(s). Cochrane Handbook for Systematic Reviews of Diagnostic Test Accuracy. 1 edition. Chichester (UK): John Wiley & Sons, 2023.
Takwoingi 2023a
    1. Takwoingi Y, Dendukuri N, Schiller I, Rücker G, Jones HE, Partlett C, et al. Supplementary material 1 to Chapter 10: Code for undertaking meta-analysis. In: Deeks, JJ, Bossuyt, PM, Leeflang, MM, Takwoingi Y, editors(s). Cochrane Handbook for Systematic Reviews of Diagnostic Test Accuracy. 1 edition. London: John Wiley & Sons Ltd, 2023.
Umemneku 2019
    1. Umemneku Chikere CM, Wilson K, Graziadio S, Vale L, Allen AJ. Diagnostic test evaluation methodology: a systematic review of methods employed to evaluate diagnostic tests in the absence of gold standard - an update. PLoS One 2019;14(10):e0223832. [PMID: ] - PMC - PubMed
Umubyeyi 2022
    1. Umubyeyi NA, Scholten JN, Gidado M, Suarez PG. Coronavirus disease 2019 diagnosis in low- and middle-income countries: the big new bully disrupting TB and HIV diagnostic services. Journal of Molecular Diagnostics 2022;24(4):289-93. [DOI: ] - PMC - PubMed
Usher‐Smith 2016
    1. Usher-Smith JA, Sharp SJ, Griffin SJ. The spectrum effect in tests for risk prediction, screening, and diagnosis. BMJ 2016;353:i3139. [PMID: ] - PMC - PubMed
Whiting 2011
    1. Whiting PF, Rutjes AW, Westwood ME, Mallett S, Deeks JJ, Reitsma JB, et al. QUADAS-2: a revised tool for the quality assessment of diagnostic accuracy studies. Annals of Internal Medicine 2011;155(8):529-36. [PMID: ] - PubMed
World Health Organization 2020
    1. World Health Organization. Diagnostic testing for SARS-CoV-2: interim guidance. www.who.int/publications/i/item/diagnostic-testing-for-sars-cov-2 (accessed prior to 19 Sept 2024).
World Health Organization 2021a
    1. World Health Organization. Living guidance for clinical management of COVID-19. https://www.who.int/publications/i/item/WHO-2019-nCoV-clinical-2021-2 (accessed prior to 19 Sept 2024). [LICENCE: CC BYNC-SA 3.0 IGO l]
World Health Organization 2021b
    1. World Health Organization. Overview of the WHO prequalification of in vitro diagnostics assessment: prequalification of in vitro diagnostics. Version 9. https://apps.who.int/iris/handle/10665/259403 (accessed prior to 19 Sept 2024). [LICENCE: CC BY-NC-SA 3.0 IGO]
World Health Organization 2021c
    1. World Health Organization. Technical specifications for selection of essential in vitro diagnostics for SARS-COV-2 [Technical specifications for selection of essential in vitro diagnostics for SARS-COV-2]. https://www.who.int/publications-detail-redirect/WHO-2019-nCoV-Essential... (accessed prior to 19 Sept 2024):31.
World Health Organization 2023a
    1. International Health Regulations (2005) (IHR) Emergency Committee. Statement on the fifteenth meeting of the IHR (2005) Emergency Committee on the COVID-19 pandemic. https://www.who.int/news/item/05-05-2023-statement-on-the-fifteenth-meet... (accessed prior to 19 Sept 2024).
World Health Organization 2023b
    1. World Health Organization. Coronavirus disease (COVID-19) pandemic — emergency use listing procedure (EUL) for IVDs. https://extranet.who.int/pqweb/vitro-diagnostics/coronavirus-disease-cov... (accessed prior to 19 Sept 2024).
Zhang 2017
    1. Zhang X, Guo L, Ma R, Cong L, Wu Z, Wei Y, et al. Rapid detection of salmonella with recombinase aided amplification. Journal of Microbiological Methods 2017;139:202-4. [PMID: ] - PubMed
Zhu 2020
    1. Zhu N, Zhang D, Wang W, Li X, Yang B, Song J, et al. A novel coronavirus from patients with pneumonia in China, 2019. New England Journal of Medicine 2020;382(8):727-33. - PMC - PubMed

MeSH terms

LinkOut - more resources