Arenicolide Family Macrolides Provide a New Therapeutic Lead Combating Multidrug-Resistant Tuberculosis
- PMID: 39400949
- PMCID: PMC11701349
- DOI: 10.1002/anie.202412994
Arenicolide Family Macrolides Provide a New Therapeutic Lead Combating Multidrug-Resistant Tuberculosis
Abstract
The emergence of multidrug-resistant (MDR) and extensively drug-resistant (XDR) strains of Mycobacterium tuberculosis (Mtb) poses a significant threat to health globally. During searching for new chemical entities regulating MDR- and XDR-Mtb, chemical investigation of the black oil beetle gut bacterium Micromonospora sp. GR10 led to the discovery of eight new members of arenicolides along with the identification of arenicolide A (Ar-A, 1), which was a previously reported macrolide with incomplete configuration. Genomic analysis of the bacterial strain GR10 revealed their putative biosynthetic pathway. Quantum mechanics-based computation, chemical derivatizations, and bioinformatic analysis established the absolute stereochemistry of Ar-A and arenicolides D-K (Ar-D-K, 2-9) completely for the first time. Biological studies of 1-9 revealed their antimicrobial activity against MDR and XDR strains of Mtb. Ar-A had the most potent in vitro antimicrobial efficacy against MDR- and XDR-Mtb. Mechanistically, Ar-A induced ATP depletion and destabilized Mtb cell wall, thereby inhibiting growth. Notably, Ar-A exerted a significant antimicrobial effect against Mtb in macrophages, was effective in the treatment of Mtb infections, and showed a synergistic effect with amikacin (AMK) in a mouse model of MDR-Mtb lung infection. Collectively, our findings indicate Ar-A to be a promising drug lead for drug-resistant tuberculosis.
Keywords: anti-tubercular mechanism; multidrug resistance; natural product; structure determination; tuberculosis.
© 2024 The Author(s). Angewandte Chemie International Edition published by Wiley-VCH GmbH.
Conflict of interest statement
The authors submitted patent applications for arenicolides and their biological activities.
Figures








References
MeSH terms
Substances
Grants and funding
- HI22C1361/Korea Health Industry Development Institute/Republic of Korea
- RS-2023-00255021/National Research Foundation of Korea
- RS-2024-00352229/National Research Foundation of Korea
- RS-2023-00301974/Learning & Academic research institution for Master's·PhD students, and Postdocs (LAMP) Program of the National Research Foundation of Korea
LinkOut - more resources
Full Text Sources
Research Materials