Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2025 Apr;39(2):e14390.
doi: 10.1111/cobi.14390. Epub 2024 Oct 15.

Vulnerability of Southern Hemisphere bats to white-nose syndrome based on global analysis of fungal host specificity and cave temperatures

Affiliations

Vulnerability of Southern Hemisphere bats to white-nose syndrome based on global analysis of fungal host specificity and cave temperatures

Nicholas C Wu et al. Conserv Biol. 2025 Apr.

Abstract

White-nose syndrome (WNS), a disease affecting hibernating bats, is caused by the fungal pathogen Pseudogymnoascus destructans (Pd). Since the initial introduction of Pd from Eurasia to the United States in 2006, WNS has killed millions of bats throughout the temperate parts of North America. There is concern that if Pd is accidentally introduced to the Southern Hemisphere, WNS could pose similar threats to the bat fauna of the Southern Hemisphere's more temperate regions. Efforts are required to better understand the vulnerability of bats globally to WNS. We examined phylogenetic distances among cave roosting bat species globally to estimate the probability of infection by Pd. We predicted cave thermal suitability for Pd for 441 cave-roosting bat species across the globe via spatial analysis. We used host specificity models based on 65 species tested for Pd to determine phylogenetic specificity of Pd. Phylogenetic distance was not an important predictor of Pd infection, confirming that Pd has low host specificity. We found extensive areas (i.e., South America, Africa, and Australia) in the Southern Hemisphere with caves that were suitable for cave-roosting bat species and for Pd growth. Hence, if Pd spreads to the Southern Hemisphere, the risk of exposure is widespread for cave-roosting bats, and infection is possible regardless of relatedness to infected species in the Northern Hemisphere. Predicting the consequences of infection remains difficult due to lack of species-specific information about bat winter biology. Nevertheless, WNS is an important threat to naive Southern Hemisphere bat populations. Hence, biosecurity measures and planning of management responses that can help prevent or minimize a potential WNS outbreak in the Southern Hemisphere are urgently needed.

Vulnerabilidad de los murciélagos del hemisferio sur ante el síndrome de nariz blanca con base en el análisis mundial de especificidad del hospedero fúngico y las temperaturas de las cuevas Resumen El síndrome de nariz blanca (SNB), una enfermedad que afecta a los murciélagos en hibernación es causado por el hongo patógeno Pseudogymnoascus destructans (Pd). Desde la introducción inicial del Pd desde Eurasia a Estados Unidos en 2006, el SNB ha matado a millones de murciélagos en las zonas templadas de Norteamérica. Existe la preocupación de que, si el Pd se introduce por accidente en el hemisferio sur, el SNB podría amenazar de forma similar a los murciélagos en las regiones más templadas de este hemisferio. Se requieren esfuerzos para comprender mejor la vulnerabilidad de los murciélagos ante el SNB a nivel mundial. Analizamos las distancias filogenéticas entre las especies de murciélagos de cuevas de todo el mundo para estimar la probabilidad de infección por Pd. Mediante un análisis espacial, predijimos la idoneidad térmica de las cuevas para el Pd en 441 especies de murciélagos de todo el mundo. Usamos modelos de especificidad de hospedero basados en 65 especies analizadas para determinar la especificidad filogenética de Pd. La distancia filogenética no fue un factor predictivo importante de la infección por Pd, lo que confirma que la especificidad de hospedero de Pd es baja. En el hemisferio sur encontramos amplias zonas (América del Sur, África y Australia) con cuevas adecuadas para especies de murciélagos que se refugian en cuevas y para el crecimiento de Pd. Por lo tanto, si Pd se propaga en el hemisferio sur, el riesgo de exposición es generalizado para los murciélagos que pernoctan en cuevas, y la infección es posible independientemente del parentesco con especies infectadas en el hemisferio norte. Sigue siendo difícil predecir las consecuencias de la infección debido a la falta de información específica sobre la biología invernal de los murciélagos. No obstante, el SNB es una amenaza importante para las poblaciones de murciélagos del hemisferio sur que no están preparadas para enfrentarla. Por ello se necesiten medidas urgentes de bioseguridad y planificación de respuestas de gestión que puedan ayudar a prevenir o minimizar un posible brote del SNB en el hemisferio sur.

Keywords: Chiroptera; Pseudogymnoascus destructans; disease; enfermedad; hibernación; hibernation; ingenuidad ecológica; vulnerabilidad; vulnerability ecological naivety.

PubMed Disclaimer

Figures

FIGURE 1
FIGURE 1
Phylogenetic reconstruction of 782 bat species from Shi and Rabosky (2015) (branches, color grouped by family; solid branches, suborder Yangochiroptera; dashed branches, suborder Yinpterochiroptera; inner first ring, hemisphere in which bats occur; second ring, whether species roosts primarily in caves; third ring, whether winter hibernation has been studied for this species in the wild; outer forth ring, whether the species has been tested and recorded as positive for Pd [red] or as negative for Pd [gray]; outer lines circling tree, 6 most diverse bat families). Bat silhouettes for families obtained from PhyloPic 2.0 (https://www.phylopic.org/).
FIGURE 2
FIGURE 2
(a) Probability of host bat species being detected with Pseudogymnoascus destructans (Pd) based on current sampling effort in North America and Eurasia, where Pd occurs, as a function of phylogenetic distance between species, based on the 65 species that have been tested to date (curved line, main effect predicted from logistic regressions with coefficients in millions of years [my]); (b) probability of host bat species developing white‐nose syndrome (WNS) as a function of phylogenetic distance between species; (c) phylogenetic relationship of species tested for Pd in Eurasia and North America (yellow, species from North America; purple, species from Eurasia; pink, species detected with Pd; gray, species negative for Pd; dark pink, species known to develop WNS; red, species with known populations declining from WNS); and (d) base 10 logarithm of mean Pd load (ng/mm) sampled from bat species (color gradient represents Pd load intensity).
FIGURE 3
FIGURE 3
Spatial distribution of cave‐roosting bat species richness in areas with thermal conditions suitable for growth of the fungal pathogen Pseudogymnoascus destructans (Pd), which causes white‐nose syndrome, based on mean annual (a) surface temperature or (b) surface temperature adjusted for effect of distance to the cave entrance (50–100 m) (horizontal dashed line, equator).

Similar articles

Cited by

References

    1. Altizer, S. , Ostfeld, R. S. , Johnson, P. T. , Kutz, S. , & Harvell, C. D. (2013). Climate change and infectious diseases: From evidence to a predictive framework. Science, 341, 514–519. - PubMed
    1. Banks, N. C. , Paini, D. R. , Bayliss, K. L. , & Hodda, M. (2015). The role of global trade and transport network topology in the human‐mediated dispersal of alien species. Ecology Letters, 18, 188–199. - PubMed
    1. Blejwas, K. M. , Pendleton, G. W. , Kohan, M. L. , & Beard, L. O. (2021). The Milieu Souterrain Superficiel as hibernation habitat for bats: Implications for white‐nose syndrome. Journal of Mammalogy, 102, 1110–1127. - PMC - PubMed
    1. Bouarakia, O. , Linden, V. M. , Joubert, E. , Weier, S. M. , Grass, I. , Tscharntke, T. , Foord, S. H. , & Taylor, P. J. (2023). Bats and birds control tortricid pest moths in South African macadamia orchards. Agriculture, Ecosystems & Environment, 352, Article 108527.
    1. Campbell, G. S. , & Norman, J. M. (2000). An introduction to environmental biophysics. Springer.

Supplementary concepts