Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2024 Sep 25;14(19):1551.
doi: 10.3390/nano14191551.

Mobility Gaps of Hydrogenated Amorphous Silicon Related to Hydrogen Concentration and Its Influence on Electrical Performance

Francesca Peverini  1   2 Saba Aziz  3 Aishah Bashiri  3   4 Marco Bizzarri  1   2 Maurizio Boscardin  5   6 Lucio Calcagnile  7   8 Carlo Calcatelli  2 Daniela Calvo  9 Silvia Caponi  10 Mirco Caprai  1 Domenico Caputo  11   12 Anna Paola Caricato  7 Roberto Catalano  13 Roberto Cirro  9 Giuseppe Antonio Pablo Cirrone  13 Michele Crivellari  6 Tommaso Croci  1   14 Giacomo Cuttone  13 Gianpiero de Cesare  1   11 Paolo De Remigis  9 Sylvain Dunand  15 Michele Fabi  16   17 Luca Frontini  18 Livio Fanò  1   2 Benedetta Gianfelici  1   2 Catia Grimani  16   17 Omar Hammad  6 Maria Ionica  1 Keida Kanxheri  1   2 Matthew Large  4 Francesca Lenta  9   19 Valentino Liberali  18 Nicola Lovecchio  11   12 Maurizio Martino  7 Giuseppe Maruccio  7 Giovanni Mazza  9 Mauro Menichelli  1 Anna Grazia Monteduro  7 Francesco Moscatelli  1   10 Arianna Morozzi  1 Augusto Nascetti  11   20 Stefania Pallotta  17   21 Andrea Papi  1 Daniele Passeri  1   14 Marco Petasecca  4 Giada Petringa  13 Igor Pis  22 Pisana Placidi  1   14 Gianluca Quarta  7   8 Silvia Rizzato  7 Alessandro Rossi  1   2 Giulia Rossi  1 Federico Sabbatini  16   17 Andrea Scorzoni  1   14 Leonello Servoli  1 Alberto Stabile  18 Silvia Tacchi  10 Cinzia Talamonti  17   21 Jonathan Thomet  15 Luca Tosti  1 Giovanni Verzellesi  5   23 Mattia Villani  16   17 Richard James Wheadon  9 Nicolas Wyrsch  15 Nicola Zema  1   24 Maddalena Pedio  1   10
Affiliations

Mobility Gaps of Hydrogenated Amorphous Silicon Related to Hydrogen Concentration and Its Influence on Electrical Performance

Francesca Peverini et al. Nanomaterials (Basel). .

Abstract

This paper presents a comprehensive study of hydrogenated amorphous silicon (a-Si)-based detectors, utilizing electrical characterization, Raman spectroscopy, photoemission, and inverse photoemission techniques. The unique properties of a-Si have sparked interest in its application for radiation detection in both physics and medicine. Although amorphous silicon (a-Si) is inherently a highly defective material, hydrogenation significantly reduces defect density, enabling its use in radiation detector devices. Spectroscopic measurements provide insights into the intricate relationship between the structure and electronic properties of a-Si, enhancing our understanding of how specific configurations, such as the choice of substrate, can markedly influence detector performance. In this study, we compare the performance of a-Si detectors deposited on two different substrates: crystalline silicon (c-Si) and flexible Kapton. Our findings suggest that detectors deposited on Kapton exhibit reduced sensitivity, despite having comparable noise and leakage current levels to those on crystalline silicon. We hypothesize that this discrepancy may be attributed to the substrate material, differences in film morphology, and/or the alignment of energy levels. Further measurements are planned to substantiate these hypotheses.

Keywords: PECVD; Raman; amorphous hydrogenated silicon; flexible substrate; hydrogen bonding; inverse photoemission; photoemission; radiation detector; simulation; thin film.

PubMed Disclaimer

Conflict of interest statement

The authors declare no conflicts of interest.

Figures

Figure 1
Figure 1
Side view of the p-i-n diodes: (a) deposited on crystalline silicon and (b) deposited on Kapton. Not to scale.
Figure 2
Figure 2
Reverse leakage current comparison for two sensor types: one deposited on c-Si (blue) and the other on Kapton (orange), with leakage normalized to the detector’s sensitive volume.
Figure 3
Figure 3
Example of acquired current as a function of time for a known dose rate. The signal is consistently stable over time, with a very low noise level (S/N greater than 10).
Figure 4
Figure 4
Response curves of the sensor at varying dose rates: blue lines correspond to detectors on crystalline silicon, and orange lines correspond to detectors on Kapton.
Figure 5
Figure 5
Simulated structure: (a) device deposited on Kapton; (b) device on p-doped c-Si.
Figure 6
Figure 6
Simulated current–time signal when the carrier is generated in both the a-Si:H and c-Si layers (black), only in a-Si:H (red), and only in c-Si (blue).
Figure 7
Figure 7
Raman spectra of a-Si:H film on c-Si (a) and on Kapton (b) substrate. Crystalline silicon spectrum is shown for comparison.
Figure 8
Figure 8
(a) Raman spectra in the frequency area of the stretching vibrations of the hydride Si-H and polyhydride bonds of a-Si:H film on crystalline silicon (cSi) and Kapton. The same region in the bare crystalline silicon spectrum is shown for comparison. The smoothed lines are also shown; the top spectrum with the indication of the LSM and HSM is presented for comparison (ref. [22]). (b) Schematic representation of (1) monohydride, LSM (2) dihydride, and (3) dangling bonds near the HSM voids.
Figure 9
Figure 9
Photoemission Si2p core level deconvolution for a-Si:H device samples: top: a-Si:H/c-Si; bottom: a-Si:H/Kapton.
Figure 10
Figure 10
Schematic diagram of distribution of energy states in a-Si:H. Defect states are represented by two equal Gaussian distributions.
Figure 11
Figure 11
Combined photoemission and inverse photoemission measurements of the Kapton (green) and c-Si samples (red). The lines correspond to the smoothed curves. The value of the transport gap is calculated by the mobility edges of the valence band (photoemission) and conduction band (inverse photoemission) as obtained by the standard graphical method.

References

    1. Kyrgias G., Hajiioannou J., Tolia M., Kouloulias V., Lachanas V., Skoulakis C., Skarlatos I., Rapidis A., Bizakis I. Intraoperative radiation therapy (IORT) in head and neck cancer: A systematic review. Medicine. 2016;95:5035. doi: 10.1097/MD.0000000000005035. - DOI - PMC - PubMed
    1. Favaudon V., Caplier L., Monceau V., Pouzoulet F., Sayarath M., Fouillade C., Poupon M.F., Brito I., Hupé P., Bourhis J., et al. Ultrahigh dose-rate ash irradiation increases the dierential response between normal and tumor tissue in mice. Sci. Transl. Med. 2014;11:eaba4525. - PubMed
    1. Parascandolo C. May. The RIB facility EXOTIC and its experimental program at INFN-LNL. J. Phys. Conf. Ser. 2018;1014:012012.
    1. Menichelli M., Bizzarri M., Boscardin M., Calcagnile L., Caprai M., Caricato A.P., Cirrone G.A.P., Crivellari M., Cupparo I., Cuttone G., et al. Neutron irradiation of Hydrogenated Amorphous Silicon p-i-n diodes and charge selective contacts detectors. Nucl. Instrum. Methods Phys. Res. Sect. A Accel. Spectrometers Detect. Assoc. Equip. 2023;1052:168308. doi: 10.1016/j.nima.2023.168308. - DOI
    1. Wyrsch N., Miazza C., Dunand S., Ballif C., Shah A., Despeisse M., Moraes D., Powolny F., Jarron P. Radiation hardness of amorphous silicon particle sensors. J. Non-Cryst. Solids. 2006;352:1797–1800. doi: 10.1016/j.jnoncrysol.2005.10.035. - DOI

LinkOut - more resources