Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2024 Dec 1;80(Pt 6):517-547.
doi: 10.1107/S2052520624007492. Online ahead of print.

The seventh blind test of crystal structure prediction: structure generation methods

Lily M Hunnisett  1 Jonas Nyman  1 Nicholas Francia  1 Nathan S Abraham  2 Claire S Adjiman  3 Srinivasulu Aitipamula  4 Tamador Alkhidir  5 Mubarak Almehairbi  5 Andrea Anelli  6 Dylan M Anstine  7 John E Anthony  8 Joseph E Arnold  9 Faezeh Bahrami  10 Michael A Bellucci  11 Rajni M Bhardwaj  2 Imanuel Bier  12 Joanna A Bis  13 A Daniel Boese  14 David H Bowskill  3 James Bramley  9 Jan Gerit Brandenburg  15 Doris E Braun  16 Patrick W V Butler  9 Joseph Cadden  4 Stephen Carino  13 Eric J Chan  17 Chao Chang  18 Bingqing Cheng  19 Sarah M Clarke  20 Simon J Coles  9 Richard I Cooper  21 Ricky Couch  13 Ramon Cuadrado  9 Tom Darden  22 Graeme M Day  9 Hanno Dietrich  23 Yiming Ding  24 Antonio DiPasquale  25 Bhausaheb Dhokale  26 Bouke P van Eijck  27 Mark R J Elsegood  28 Dzmitry Firaha  23 Wenbo Fu  18 Kaori Fukuzawa  29 Joseph Glover  9 Hitoshi Goto  30 Chandler Greenwell  11 Rui Guo  24 Jürgen Harter  1 Julian Helfferich  23 Detlef W M Hofmann  31 Johannes Hoja  14 John Hone  32 Richard Hong  2 Geoffrey Hutchison  33 Yasuhiro Ikabata  30 Olexandr Isayev  7 Ommair Ishaque  34 Varsha Jain  22 Yingdi Jin  18 Aling Jing  34 Erin R Johnson  20 Ian Jones  32 K V Jovan Jose  35 Elena A Kabova  36 Adam Keates  32 Paul F Kelly  28 Dmitry Khakimov  37 Stefanos Konstantinopoulos  3 Liudmila N Kuleshova  38 He Li  18 Xiaolu Lin  18 Alexander List  14 Congcong Liu  18 Yifei Michelle Liu  23 Zenghui Liu  18 Zhi Pan Liu  39 Joseph W Lubach  25 Noa Marom  12 Alexander A Maryewski  40 Hiroyuki Matsui  41 Alessandra Mattei  2 R Alex Mayo  20 John W Melkumov  34 Sharmarke Mohamed  5 Zahrasadat Momenzadeh Abardeh  40 Hari S Muddana  22 Naofumi Nakayama  42 Kamal Singh Nayal  7 Marcus A Neumann  23 Rahul Nikhar  34 Shigeaki Obata  30 Dana O'Connor  12 Artem R Oganov  40 Koji Okuwaki  43 Alberto Otero-de-la-Roza  44 Constantinos C Pantelides  3 Sean Parkin  8 Chris J Pickard  45 Luca Pilia  46 Tatyana Pivina  37 Rafał Podeszwa  47 Alastair J A Price  20 Louise S Price  24 Sarah L Price  24 Michael R Probert  48 Angeles Pulido  1 Gunjan Rajendra Ramteke  35 Atta Ur Rehman  34 Susan M Reutzel-Edens  1 Jutta Rogal  49 Marta J Ross  36 Adrian F Rumson  20 Ghazala Sadiq  1 Zeinab M Saeed  5 Alireza Salimi  10 Matteo Salvalaglio  50 Leticia Sanders de Almada  3 Kiran Sasikumar  23 Sivakumar Sekharan  12 Cheng Shang  39 Kenneth Shankland  36 Kotaro Shinohara  41 Baimei Shi  18 Xuekun Shi  18 A Geoffrey Skillman  20 Hongxing Song  17 Nina Strasser  14 Jacco van de Streek  23 Isaac J Sugden  1 Guangxu Sun  18 Krzysztof Szalewicz  34 Benjamin I Tan  3 Lu Tan  18 Frank Tarczynski  13 Christopher R Taylor  9 Alexandre Tkatchenko  51 Rithwik Tom  12 Mark E Tuckerman  52 Yohei Utsumi  43 Leslie Vogt-Maranto  17 Jake Weatherston  48 Luke J Wilkinson  28 Robert D Willacy  1 Lukasz Wojtas  53 Grahame R Woollam  54 Zhuocen Yang  18 Etsuo Yonemochi  43 Xin Yue  18 Qun Zeng  18 Yizu Zhang  3 Tian Zhou  18 Yunfei Zhou  18 Roman Zubatyuk  7 Jason C Cole  1
Affiliations

The seventh blind test of crystal structure prediction: structure generation methods

Lily M Hunnisett et al. Acta Crystallogr B Struct Sci Cryst Eng Mater. .

Abstract

A seventh blind test of crystal structure prediction was organized by the Cambridge Crystallographic Data Centre featuring seven target systems of varying complexity: a silicon and iodine-containing molecule, a copper coordination complex, a near-rigid molecule, a cocrystal, a polymorphic small agrochemical, a highly flexible polymorphic drug candidate, and a polymorphic morpholine salt. In this first of two parts focusing on structure generation methods, many crystal structure prediction (CSP) methods performed well for the small but flexible agrochemical compound, successfully reproducing the experimentally observed crystal structures, while few groups were successful for the systems of higher complexity. A powder X-ray diffraction (PXRD) assisted exercise demonstrated the use of CSP in successfully determining a crystal structure from a low-quality PXRD pattern. The use of CSP in the prediction of likely cocrystal stoichiometry was also explored, demonstrating multiple possible approaches. Crystallographic disorder emerged as an important theme throughout the test as both a challenge for analysis and a major achievement where two groups blindly predicted the existence of disorder for the first time. Additionally, large-scale comparisons of the sets of predicted crystal structures also showed that some methods yield sets that largely contain the same crystal structures.

Keywords: Cambridge Structural Database; blind test; crystal structure prediction; lattice energy; polymorphism.

PubMed Disclaimer

Figures

Figure 1
Figure 1
Crystal packing of XXVII Form A at 90 K excluding the bromine atoms from an impurity, and highlighting the two TIPS groups: A (orange) and B (blue). Hydrogen atoms were omitted for clarity.
Figure 2
Figure 2
Stacked molecules of XXVIII, viewed along the crystallographic c axis, showing the weak intermolecular H⋯Cl hydrogen bonds detected at a distance of the sum of van der Waals radii plus 0.1 Å.
Figure 3
Figure 3
Molecules in the asymmetric unit of XXX Form A, highlighting the disorder observed in the alkyl chain.
Figure 4
Figure 4
Crystal packing motif of XXXIII Form A (top) and Form B (bottom). Hydrogen atoms were omitted for clarity.
Figure 5
Figure 5
Molecular dynamics (MD)-based analysis of molecule XXVII conformational ensemble at finite temperature. (a, top) Free energy surfaces corresponding to TIPS A (orange) and B (blue) obtained by biasing the angles ϕ1 and ϕ2 shown in the middle. These show different behaviour in both basin shapes and locations. (a, bottom) Equilibrium probability distributions derived from the free energy surfaces with bounding boxes used to calculate the equilibrium probability of each conformational state. These were further divided into three regions over ϕ1 to account for the configuration of the three isopropyl groups. This results in equilibrium probabilities reported in panels (b) and (c), where the molecular structure of the main conformers is shown associated with the colour corresponding to the appropriate bounding box.
Figure 6
Figure 6
An overlay of the two polytypes of XXIX Form A; structures ranked first (light green, P21/c) and second (violet, Pc) submitted by Group 20. Note how every sixth layer is oriented differently in the two polytypes. Hydrogen atoms are omitted for clarity.
Figure 7
Figure 7
On top is the artificial target PXRD pattern given to participants, shown here without background profile. Second from the top is a pattern simulated from the experimental single-crystal X-ray diffraction (SCXRD) structure of Form A (P21/c). The blue pattern, third from top, corresponds to the closest matching predicted structure after its lattice parameters have been adjusted with VC-PWDF. The red pattern, fourth from top, was simulated from the same crystal structure as found by CSP by Group 20. The bottom two patterns correspond to a polytype structure in space group Pc found by Group 10, as found by CSP (green), and after optimizing the PXRD similarity (orange). Note the subtle differences in Bragg peak positions and extinctions between the Pc and P21/c structures. Inserted below is a PXRD intensity difference plot of the lattice-adjusted CSP structures relative to the SCXRD structure of Form A. The y axis has been scaled by a factor of 5 to aid the eye.
Figure 8
Figure 8
Convex hull (grey line) of the free energy of formation, approximated as the PBE-D3 lattice energy, ΔfE, of cannabinol tetramethylpyrazine cocrystals as a function of their composition. The data was provided by Group 22. Each data point corresponds to a distinct predicted cocrystal structure. Note that structures of three different stoichiometries lie on the convex hull.
Figure 9
Figure 9
COMPACK overlay of XXXII Form B at 90 K (coloured by element) with the redetermination from PXRD of XXXII Form B (ambient temperature) by Group 20 (coloured green). Hydrogen atoms were omitted for clarity.
Figure 10
Figure 10
Crystal structure set similarity heat maps for molecules XXVII and XXIX showing the percentage of structures from the group on the horizontal axis that match a structure from the group on the vertical axis. Top plots show the 100 versus 100 comparisons, while those at the bottom the 100 versus all ones. Some groups have to a large extent predicted the same crystal structures. The comparisons are not symmetric because multiple structures in one set can match a single structure from another one; this is possibly due to stricter clustering criteria.

References

    1. Abraham, N. L. & Probert, M. I. J. (2006). Phys. Rev. B, 73, 224104.
    1. Addicoat, M., Adjiman, C. S., Arhangelskis, M., Beran, G. J. O., Brandenburg, J. G., Braun, D. E., Burger, V., Burow, A., Collins, C., Cooper, A., Day, G. M., Deringer, V. L., Dyer, M. S., Hare, A., Jelfs, K. E., Keupp, J., Konstantinopoulos, S., Li, Y., Ma, Y., Marom, N., McKay, D., Mellot-Draznieks, C., Mohamed, S., Neumann, M., Nilsson Lill, S., Nyman, J., Oganov, A. R., Price, S. L., Reutzel-Edens, S., Ruggiero, M., Sastre, G., Schmid, R., Schmidt, J., Schön, J. C., Spackman, P., Tsuzuki, S., Woodley, S. M., Yang, S. & Zhu, Q. (2018). Faraday Discuss.211, 133–180. - PubMed
    1. Adjiman, C. S., Brandenburg, J. G., Braun, D. E., Cole, J., Collins, C., Cooper, A. I., Cruz-Cabeza, A. J., Day, G. M., Dudek, M., Hare, A., Iuzzolino, L., McKay, D., Mitchell, J. B. O., Mohamed, S., Neelamraju, S., Neumann, M., Nilsson Lill, S., Nyman, J., Oganov, A. R., Price, S. L., Pulido, A., Reutzel-Edens, S., Rietveld, I., Ruggiero, M. T., Schön, J. C., Tsuzuki, S., van den Ende, J., Woollam, G. & Zhu, Q. (2018). Faraday Discuss.211, 493–539. - PubMed
    1. Alshamrani, A. F. A., Santoro, O., Ounsworth, S., Prior, T. J., Stasiuk, G. J. & Redshaw, C. (2021). Polyhedron, 195, 114977.
    1. Altomare, A., Cuocci, C., Moliterni, A. & Rizz, R. (2019). In International Tables for Crystallography, Vol. H: Powder diffraction. International Union of Crystallography.

LinkOut - more resources