Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2024 Dec;8(12):2195-2212.
doi: 10.1038/s41559-024-02564-9. Epub 2024 Oct 15.

The global distribution and drivers of wood density and their impact on forest carbon stocks

Lidong Mo  1 Thomas W Crowther  2 Daniel S Maynard  2   3 Johan van den Hoogen  2 Haozhi Ma  2 Lalasia Bialic-Murphy  2 Jingjing Liang  4 Sergio de-Miguel  5   6 Gert-Jan Nabuurs  7 Peter B Reich  8   9   10 Oliver L Phillips  11 Meinrad Abegg  12 Yves C Adou Yao  13 Giorgio Alberti  14   15 Angelica M Almeyda Zambrano  16 Braulio Vilchez Alvarado  17 Esteban Alvarez-Dávila  18 Patricia Alvarez-Loayza  19 Luciana F Alves  20 Iêda Amaral  21 Christian Ammer  22 Clara Antón-Fernández  23 Alejandro Araujo-Murakami  24 Luzmila Arroyo  24 Valerio Avitabile  25 Gerardo A Aymard  26   27 Timothy R Baker  11 Radomir Bałazy  28 Olaf Banki  29 Jorcely G Barroso  30 Meredith L Bastian  31   32 Jean-Francois Bastin  33 Luca Birigazzi  34 Philippe Birnbaum  35   36   37 Robert Bitariho  38 Pascal Boeckx  39 Frans Bongers  7 Coline C F Boonman  40   41 Olivier Bouriaud  42 Pedro H S Brancalion  43 Susanne Brandl  44 Francis Q Brearley  45 Roel Brienen  11 Eben N Broadbent  16 Helge Bruelheide  46   47 Filippo Bussotti  48 Roberto Cazzolla Gatti  49 Ricardo G César  43 Goran Cesljar  50 Robin Chazdon  51   52 Han Y H Chen  53 Chelsea Chisholm  2 Hyunkook Cho  54 Emil Cienciala  55   56 Connie Clark  57 David Clark  58 Gabriel D Colletta  59 David A Coomes  60 Fernando Cornejo Valverde  61 José J Corral-Rivas  62 Philip M Crim  63   64 Jonathan R Cumming  63 Selvadurai Dayanandan  65 André L de Gasper  66 Mathieu Decuyper  7 Géraldine Derroire  67 Ben DeVries  68 Ilija Djordjevic  69 Jiri Dolezal  70   71 Aurélie Dourdain  67 Nestor Laurier Engone Obiang  72 Brian J Enquist  73   74 Teresa J Eyre  75 Adandé Belarmain Fandohan  76 Tom M Fayle  77   78 Ted R Feldpausch  79 Leandro V Ferreira  80 Leena Finér  81 Markus Fischer  82 Christine Fletcher  83 Lorenzo Frizzera  84 Javier G P Gamarra  85 Damiano Gianelle  84 Henry B Glick  86 David J Harris  87 Andrew Hector  88 Andreas Hemp  89 Geerten Hengeveld  7 Bruno Hérault  90   91 John L Herbohn  92 Martin Herold  93 Peter Hietz  94 Annika Hillers  95   96 Eurídice N Honorio Coronado  97 Cang Hui  98   99 Thomas Ibanez  100 Nobuo Imai  101 Andrzej M Jagodziński  102   103 Bogdan Jaroszewicz  104 Vivian Kvist Johannsen  105 Carlos A Joly  106 Tommaso Jucker  107 Ilbin Jung  54 Viktor Karminov  108 Kuswata Kartawinata  109 Elizabeth Kearsley  110 David Kenfack  111 Deborah K Kennard  112 Sebastian Kepfer-Rojas  105 Gunnar Keppel  113 Mohammed Latif Khan  114 Timothy J Killeen  24 Hyun Seok Kim  115   116   117   118 Kanehiro Kitayama  119 Michael Köhl  120 Henn Korjus  121 Florian Kraxner  122 Dmitry Kucher  123 Diana Laarmann  121 Mait Lang  121 Simon L Lewis  11   124 Yuanzhi Li  125 Gabriela Lopez-Gonzalez  11 Huicui Lu  126 Natalia V Lukina  127 Brian S Maitner  73 Yadvinder Malhi  128 Eric Marcon  129 Beatriz Schwantes Marimon  130 Ben Hur Marimon-Junior  130 Andrew R Marshall  92   131   132 Emanuel H Martin  133 James K McCarthy  134 Jorge A Meave  135 Omar Melo-Cruz  136 Casimiro Mendoza  137 Irina Mendoza-Polo  138 Stanislaw Miscicki  139 Cory Merow  51 Abel Monteagudo Mendoza  140   141 Vanessa S Moreno  43 Sharif A Mukul  92   142 Philip Mundhenk  120 María Guadalupe Nava-Miranda  143   144 David Neill  145 Victor J Neldner  75 Radovan V Nevenic  69 Michael R Ngugi  75 Pascal A Niklaus  146 Petr Ontikov  108 Edgar Ortiz-Malavasi  17 Yude Pan  147 Alain Paquette  148 Alexander Parada-Gutierrez  24 Elena I Parfenova  149 Minjee Park  4   115 Marc Parren  150 Narayanaswamy Parthasarathy  151 Pablo L Peri  152 Sebastian Pfautsch  153 Nicolas Picard  154 Maria Teresa F Piedade  155 Daniel Piotto  156 Nigel C A Pitman  19 Lourens Poorter  7 Axel Dalberg Poulsen  87 John R Poulsen  57   157 Hans Pretzsch  158   159 Freddy Ramirez Arevalo  160 Zorayda Restrepo-Correa  161 Sarah J Richardson  134 Mirco Rodeghiero  84   162 Samir G Rolim  156 Anand Roopsind  163 Francesco Rovero  164   165 Ervan Rutishauser  166 Purabi Saikia  167 Christian Salas-Eljatib  168   169 Philippe Saner  170 Peter Schall  22 Mart-Jan Schelhaas  7 Dmitry Schepaschenko  171   172 Michael Scherer-Lorenzen  173 Bernhard Schmid  174 Jochen Schöngart  155 Eric B Searle  148 Vladimír Seben  175 Josep M Serra-Diaz  176   177 Douglas Sheil  150   178 Anatoly Z Shvidenko  122 Ana Carolina Da Silva  179 Javier E Silva-Espejo  180 Marcos Silveira  181 James Singh  182 Plinio Sist  90 Ferry Slik  183 Bonaventure Sonké  184 Enio Egon Sosinski Jr  185 Alexandre F Souza  186 Krzysztof J Stereńczak  28 Jens-Christian Svenning  41   187 Miroslav Svoboda  188 Ben Swanepoel  189 Natalia Targhetta  155 Nadja Tchebakova  149 Hans Ter Steege  29   190 Raquel Thomas  191 Elena Tikhonova  127 Peter M Umunay  192 Vladimir A Usoltsev  193 Renato Valencia  194 Fernando Valladares  195 Peter M Van Bodegom  196 Fons van der Plas  197 Tran Van Do  198 Michael E van Nuland  199 Rodolfo M Vasquez  140 Hans Verbeeck  110 Helder Viana  200   201 Alexander C Vibrans  66   202 Simone Vieira  203 Klaus von Gadow  204 Hua-Feng Wang  205 James V Watson  206 Gijsbert D A Werner  207 Florian Wittmann  208 Hannsjoerg Woell  209 Verginia Wortel  210 Roderick Zagt  211 Tomasz Zawiła-Niedźwiecki  212 Chunyu Zhang  213 Xiuhai Zhao  213 Mo Zhou  4 Zhi-Xin Zhu  205 Irie C Zo-Bi  91 Constantin M Zohner  2
Affiliations

The global distribution and drivers of wood density and their impact on forest carbon stocks

Lidong Mo et al. Nat Ecol Evol. 2024 Dec.

Abstract

The density of wood is a key indicator of the carbon investment strategies of trees, impacting productivity and carbon storage. Despite its importance, the global variation in wood density and its environmental controls remain poorly understood, preventing accurate predictions of global forest carbon stocks. Here we analyse information from 1.1 million forest inventory plots alongside wood density data from 10,703 tree species to create a spatially explicit understanding of the global wood density distribution and its drivers. Our findings reveal a pronounced latitudinal gradient, with wood in tropical forests being up to 30% denser than that in boreal forests. In both angiosperms and gymnosperms, hydrothermal conditions represented by annual mean temperature and soil moisture emerged as the primary factors influencing the variation in wood density globally. This indicates similar environmental filters and evolutionary adaptations among distinct plant groups, underscoring the essential role of abiotic factors in determining wood density in forest ecosystems. Additionally, our study highlights the prominent role of disturbance, such as human modification and fire risk, in influencing wood density at more local scales. Factoring in the spatial variation of wood density notably changes the estimates of forest carbon stocks, leading to differences of up to 21% within biomes. Therefore, our research contributes to a deeper understanding of terrestrial biomass distribution and how environmental changes and disturbances impact forest ecosystems.

PubMed Disclaimer

Conflict of interest statement

Competing interests: The authors declare no competing interests.

Figures

Fig. 1
Fig. 1. Observed wood densities across the global forest inventory plots and within gymnosperms, angiosperms, forest types and biomes.
a–c, Wood density distribution of gymnosperm (a) and angiosperm (c) species and influence of the proportion of angiosperms on CWD (b). The wood density distribution in gymnospermous species is narrower and has a smaller mean (~20% lower) than in angiospermous species. b, CWD increases with increasing proportion of angiospermous species in forest communities. We included 8,249 taxa with information on angiosperms and gymnosperms comprising 8,036 angiosperms and 213 gymnosperms, each with wood density information available at the species or genus level. d, Map of CWD observations for the ~1.1 million plots from the GFBi database. e,f, Box plots of observed CWD at the forest type (e) or biome level (f). Box plot shows the median, interquartile range and whiskers for data spread, excluding outliers.
Fig. 2
Fig. 2. Phylogenetic tree and wood density information of global tree species.
The phylogenetic tree was constructed using the R package V.PhyloMaker, with wood density information available for 4,298 species (189 families from 55 orders). Wood density exhibits a strong phylogenetic signal (Pagel’s lambda = 0.92, P < 0.01, Blomberg’s K = 0.01, P < 0.01). The colours of the branches and the grey bars at the tips represent the wood density of each species. To identify orders that have significantly different wood densities compared to all other tree species, we conducted a two-tailed significance test by comparing the order-level wood density with 999 randomized wood density values from the entire phylogenetic tree. The coloured circle surrounding the phylogeny represents different orders. The filled blue/red circles inside the phylogeny indicate orders that show significantly (P < 0.05) lower (blue) or higher (red) wood densities relative to all the species. Numbers inside the circles represent the average wood density of the respective order.
Fig. 3
Fig. 3. Global maps of wood density.
a,c,e, Wood density maps for all species (a), angiosperms-only (c) and gymnosperms-only (e). a, The community-level wood density map was derived from an ensemble approach, averaging the global predictions from the 200 best random-forest models. c,e, Angiosperm-only (c) and gymnosperm-only (e) wood density maps were derived from ensemble averaging of the global predictions from the 100 best random-forest models, respectively. b,d,f, Corresponding latitudinal trends in wood density aggregated for each 0.1 arc degree latitude: all species (b), angiosperms (d) and gymnosperms (f). Error ranges represent 1 s.d. either side of the mean. Maps are projected at 30 arcsec (~1 km2) resolution. Non-forested areas are displayed in grey. In the wood density maps for angiosperms (c) and gymnosperms (e), we correspondingly excluded pixels where angiosperms and gymnosperms constituted <5% of the entire community.
Fig. 4
Fig. 4. Variable importance of the selected environmental metrics.
af, The environmental metrics are based on random-forest models (a,c,e) and linear partial regression models (b,d,f). a,b, Variable importance of the selected covariates across global forests, including angiosperm ratio to control for wood density differences between angiosperms and gymnosperms. c,d, Variable importance within angiosperm-only communities. e,f, Variable importance within gymnosperm-only communities. Mean decrease in accuracy values in a, c and e represents the relative contribution of each variable to CWD variation, whereby we averaged the values of 100 bootstrapped random-forest models. Bootstrapped partial regression coefficients for each variable (b,d,f) were calculated by averaging the partial regression coefficients from 100 multivariate linear models. All variables were standardized to allow for direct effect size comparison. In addition, we quantified the absolute effects of these covariates using partial regression analysis, as detailed in Supplementary Table 5.
Fig. 5
Fig. 5. Comparison of global living tree biomass distribution using spatially explicit wood density data versus a universal wood density value.
a, The global distribution of living tree biomass (in tonnes per hectare), derived by integrating our wood density map with spatially explicit data on living tree volume, root mass fraction and biomass expansion factors. b, Percentage difference in estimated living tree biomass when comparing results derived using the global wood density map (from a) with estimates using a single, universal wood density value. The difference is calculated as the percentage change by subtracting the spatially explicit estimate from the universal estimate and then dividing by the spatially explicit estimate. Blue areas show regions where the universal estimate is higher, and red/orange areas indicate where the spatial estimate is higher. c, Percentage difference between the two biomass estimation methods across biomes. Box plots show the median, interquartile range and whiskers for data spread, excluding outliers.

References

    1. Chave, J. et al. Towards a worldwide wood economics spectrum. Ecol. Lett.12, 351–366 (2009). - PubMed
    1. Swenson, N. G. & Enquist, B. J. Ecological and evolutionary determinants of a key plant functional trait: wood density and its community-wide variation across latitude and elevation. Am. J. Bot.94, 451–459 (2007). - PubMed
    1. Kraft, N. J. B., Metz, M. R., Condit, R. S. & Chave, J. The relationship between wood density and mortality in a global tropical forest data set. New Phytol.188, 1124–1136 (2010). - PubMed
    1. Pérez-Ramos, I. M., Matías, L., Gómez-Aparicio, L. & Godoy, Ó. Functional traits and phenotypic plasticity modulate species coexistence across contrasting climatic conditions. Nat. Commun.10, 2555 (2019). - PMC - PubMed
    1. Reich, P. B. et al. The evolution of plant functional variation: traits, spectra and strategies. Int. J. Plant Sci.164, S143–S164 (2003).

LinkOut - more resources