Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
Review
. 2024 Oct 8;25(19):10807.
doi: 10.3390/ijms251910807.

Role of Na+-K+ ATPase Alterations in the Development of Heart Failure

Affiliations
Review

Role of Na+-K+ ATPase Alterations in the Development of Heart Failure

Naranjan S Dhalla et al. Int J Mol Sci. .

Abstract

Na+-K+ ATPase is an integral component of cardiac sarcolemma and consists of three major subunits, namely the α-subunit with three isoforms (α1, α2, and α3), β-subunit with two isoforms (β1 and β2) and γ-subunit (phospholemman). This enzyme has been demonstrated to transport three Na and two K ions to generate a trans-membrane gradient, maintain cation homeostasis in cardiomyocytes and participate in regulating contractile force development. Na+-K+ ATPase serves as a receptor for both exogenous and endogenous cardiotonic glycosides and steroids, and a signal transducer for modifying myocardial metabolism as well as cellular survival and death. In addition, Na+-K+ ATPase is regulated by different hormones through the phosphorylation/dephosphorylation of phospholemman, which is tightly bound to this enzyme. The activity of Na+-K+ ATPase has been reported to be increased, unaltered and depressed in failing hearts depending upon the type and stage of heart failure as well as the association/disassociation of phospholemman and binding with endogenous cardiotonic steroids, namely endogenous ouabain and marinobufagenin. Increased Na+-K+ ATPase activity in association with a depressed level of intracellular Na+ in failing hearts is considered to decrease intracellular Ca2+ and serve as an adaptive mechanism for maintaining cardiac function. The slight to moderate depression of Na+-K+ ATPase by cardiac glycosides in association with an increased level of Na+ in cardiomyocytes is known to produce beneficial effects in failing hearts. On the other hand, markedly reduced Na+-K+ ATPase activity associated with an increased level of intracellular Na+ in failing hearts has been demonstrated to result in an intracellular Ca2+ overload, the occurrence of cardiac arrhythmias and depression in cardiac function during the development of heart failure. Furthermore, the status of Na+-K+ ATPase activity in heart failure is determined by changes in isoform subunits of the enzyme, the development of oxidative stress, intracellular Ca2+-overload, protease activation, the activity of inflammatory cytokines and sarcolemmal lipid composition. Evidence has been presented to show that marked alterations in myocardial cations cannot be explained exclusively on the basis of sarcolemma alterations, as other Ca2+ channels, cation transporters and exchangers may be involved in this event. A marked reduction in Na+-K+ ATPase activity due to a shift in its isoform subunits in association with intracellular Ca2+-overload, cardiac energy depletion, increased membrane permeability, Ca2+-handling abnormalities and damage to myocardial ultrastructure appear to be involved in the progression of heart failure.

Keywords: Na+-K+ ATPase isoforms; cardiac Na+-K+ ATPase; cardiac dysfunction; endogenous steroids; heart failure; myocardial cation content; phospholemman phosphorylation.

PubMed Disclaimer

Conflict of interest statement

The authors have no conflicts of interest.

Figures

Figure 1
Figure 1
Role of alterations in Na+-K+ ATPase isozymes and depression in the enzyme activity in the development of heart failure. ↑—increase.
Figure 2
Figure 2
Role of changes in signal transduction mechanisms following depression of Na+-K+ ATPase activity in the progression of heart failure. ↑—increase.
Figure 3
Figure 3
Role of various hormones in the depression Na+-K+ ATPase activity and changes in cardiac cation contents in the development of heart failure. ↑—increase.

References

    1. Skou J.C. Enzymatic basis for active transport of Na+ and K+ across cell membrane. Physiol. Rev. 1965;45:596–617. doi: 10.1152/physrev.1965.45.3.596. - DOI - PubMed
    1. Kaplan J.H. Biochemistry of Na, K-ATPase. Annu. Rev. Biochem. 2002;71:511–535. doi: 10.1146/annurev.biochem.71.102201.141218. - DOI - PubMed
    1. Ziegelhoffer A., Kjeldsen K., Bundgaard H., Breier A., Vrbjarm N., Dzurba A. Na, K-ATPase in the myocardium: Molecular principles, functional and clinical aspects. Gen. Physiol. Biophys. 2000;19:9–47. - PubMed
    1. Jorgensen P.L., Hakansson K.O., Karlish S.J. Structure and mechanism of Na, K-ATPase: Functional sites and their interactions. Annu. Rev. Physiol. 2003;65:817–849. doi: 10.1146/annurev.physiol.65.092101.142558. - DOI - PubMed
    1. Garty H., Karlish S.J. Role of FXYD proteins in ion transport. Annu. Rev. Physiol. 2006;68:431–459. doi: 10.1146/annurev.physiol.68.040104.131852. - DOI - PubMed

LinkOut - more resources