A Temperature-Robust Envelope Detector Receiving OOK-Modulated Signals for Low-Power Applications
- PMID: 39409409
- PMCID: PMC11478571
- DOI: 10.3390/s24196369
A Temperature-Robust Envelope Detector Receiving OOK-Modulated Signals for Low-Power Applications
Abstract
This paper presents a passive Envelope Detector (ED) to be used for reception of OOK-modulated signals, such as in Wake-Up Receivers employed within Wireless Sensor Networks, widely used in the IoT. The main goal is implementing a temperature compensation mechanism in order to keep the passive ED input resistance roughly constant over temperature, making it a constant load for the preceding matching network and ultimately keeping the overall receiving chain sensitivity constant over temperature. The proposed ED was designed using STMicroelectronics 90 nm CMOS technology to receive 1 kbps OOK-modulated packets with a 433 MHz carrier frequency and a 0.6 V supply. The use of a block featuring a Proportional-to-Absolute Temperature (PTAT) current yields a 5 dB reduction in sensitivity temperature variation across the -40 °C to 120 °C range. Moreover, two different implementations were compared, one targeting minimal mismatch and the other one targeting minimal area. The minimal area version appears to be better in terms of estimated overall chain sensitivity at all temperatures despite a higher sensitivity spread.
Keywords: envelope detector; temperature compensation; ultra-low-power; wake-up receivers (WuRXs).
Conflict of interest statement
Authors Alessia Maria Elgani, Matteo D’Addato, Roberto Canegallo and Giulio Ricotti were employed by the company STMicroelectronics. The remaining authors declare that the research was conducted in the absence of any commercial or financial relationships that could be construed as a potential conflict of interest.
Figures








References
-
- Mercier P., Calhoun B., Wang P.-H., Dissanayake A., Zhang L., Hall D., Bowers S. Low-Power RF Wake-Up Receivers: Analysis, Tradeoffs, and Design. IEEE Open J. Solid-State Circuits Soc. 2022;2:144–164. doi: 10.1109/OJSSCS.2022.3215099. - DOI
-
- Kandris D., Nakas C., Vomvas D., Koulouras G. Applications of Wireless Sensor Networks: An Up-to-Date Survey. Appl. Syst. Innov. 2020;3:14. doi: 10.3390/asi3010014. - DOI
-
- Perilli L., Scarselli E.F., La Rosa R., Canegallo R. Wake-Up Radio Impact in Self-Sustainability of Sensor and Actuator Wireless Nodes in Smart Home Applications; Proceedings of the 2018 Ninth International Green and Sustainable Computing Conference (IGSC); Pittsburgh, PA, USA. 22–24 October 2018.
LinkOut - more resources
Full Text Sources
Miscellaneous