Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2024 Nov:398:118622.
doi: 10.1016/j.atherosclerosis.2024.118622. Epub 2024 Oct 4.

Shear stress is uncoupled from atheroprotective KLK10 in atherosclerotic plaques

Affiliations
Free article

Shear stress is uncoupled from atheroprotective KLK10 in atherosclerotic plaques

Ziqi Zhou et al. Atherosclerosis. 2024 Nov.
Free article

Abstract

Background and aims: Physiological shear stress promotes vascular homeostasis by inducing protective molecules in endothelial cells (EC). However, physiological shear stress has been linked to atherosclerosis progression in some individuals with heightened cardiovascular risk. To address this apparent paradox, we hypothesized that diseased arteries may exhibit reduced responsiveness to the protective effects of physiological shear stress. Consequently, we compared the transcriptome of EC exposed to physiological shear stress in healthy arteries versus atherosclerotic conditions.

Methods: Employing 3D light sheet imaging and computational fluid dynamics, we identified NOS3 as a marker of physiological shear stress in both healthy and atherosclerotic murine arteries. Single-cell RNA sequencing was performed on EC from healthy (C57BL/6) mice, mildly diseased (Apoe-/- normal diet) mice, and highly diseased (Apoe-/- high fat diet) mice. The transcriptomes of Nos3high cells (exposed to physiological shear stress) were compared among the groups.

Results: Nos3high EC were associated with several markers of physiological shear stress in healthy arteries. Clustering of Nos3high EC revealed 8 different EC subsets that varied in proportion between healthy and diseased arteries. Cluster-specific nested functional enrichment of gene ontology terms revealed that Nos3high EC in diseased arteries were enriched for inflammatory and apoptotic gene expression. These alterations were accompanied by changes in several mechanoreceptors, including the atheroprotective factor KLK10, which was enriched in Nos3high EC in healthy arteries but markedly reduced in severely diseased arteries.

Conclusions: Physiological shear stress is uncoupled from atheroprotective KLK10 within atherosclerotic plaques. This sheds light on the complex interplay between shear stress, endothelial function, and the progression of atherosclerosis in individuals at risk of cardiovascular complications.

PubMed Disclaimer

Conflict of interest statement

Declaration of competing interest The authors declare the following financial interests/personal relationships which may be considered as potential competing interests: Paul Evans reports financial support was provided by British Heart Foundation. Maria Fragiadaki reports financial support was provided by UK Research and Innovation. The other authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

References

Publication types

Substances