Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2024 Oct;634(8034):561-565.
doi: 10.1038/s41586-024-08007-6. Epub 2024 Oct 16.

The Massalia asteroid family as the origin of ordinary L chondrites

Affiliations

The Massalia asteroid family as the origin of ordinary L chondrites

M Marsset et al. Nature. 2024 Oct.

Abstract

Studies of micrometeorites in mid-Ordovician limestones and impact craters on Earth indicate that our planet witnessed a massive infall of ordinary L chondrite material about 466 million years ago1-3 that may have been at the origin of an Ordovician ice age and major turnover in biodiversity4. The breakup of a large asteroid in the main belt is the likely cause of this massive infall. Currently, material originating from this breakup still dominates meteorite falls (>20% of all falls)5. Here we provide spectroscopic observations and dynamical evidence that the Massalia collisional family is the only plausible source of this catastrophic event and the most abundant class of meteorites falling on Earth today. This family of asteroids is suitably located in the inner belt, at low-inclination orbits, which corresponds to the observed distribution of L-chondrite-like near-Earth objects and interplanetary dust concentrated at 1.4° (refs. 6,7).

PubMed Disclaimer

References

    1. Heck, P. et al. Rare meteorites common in the Ordovician period. Nat. Astron. 1, 0035 (2017). - DOI
    1. Schmieder, M. & Kring, D. A. Earth’s impact events through geologic time: a list of recommended ages for terrestrial impact structures and deposits. Astrobiology 20, 91–141 (2020). - PubMed - PMC - DOI
    1. Kenkmann, T. The terrestrial impact crater record: A statistical analysis of morphologies, structures, ages, lithologies, and more. Meteorit. Planet. Sci. 56, 1024–1070 (2021). - DOI
    1. Schmitz, B. et al. An extraterrestrial trigger for the mid-Ordovician ice age: Dust from the breakup of the L-chondrite parent body. Sci. Adv. 5, eaax4184 (2019). - PubMed - PMC - DOI
    1. Swindle, T. D., Kring, D. A. & Weirich, J. R. 40Ar/39Ar ages of impacts involving ordinary chondrite meteorites. Geol. Soc. Lond. Spec. Publ. 378, 333–347 (2014). - DOI

LinkOut - more resources