Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
Meta-Analysis
. 2024 Oct 17;10(10):CD015522.
doi: 10.1002/14651858.CD015522.pub2.

Artificial intelligence for diagnosing exudative age-related macular degeneration

Affiliations
Meta-Analysis

Artificial intelligence for diagnosing exudative age-related macular degeneration

Chaerim Kang et al. Cochrane Database Syst Rev. .

Abstract

Background: Age-related macular degeneration (AMD) is a retinal disorder characterized by central retinal (macular) damage. Approximately 10% to 20% of non-exudative AMD cases progress to the exudative form, which may result in rapid deterioration of central vision. Individuals with exudative AMD (eAMD) need prompt consultation with retinal specialists to minimize the risk and extent of vision loss. Traditional methods of diagnosing ophthalmic disease rely on clinical evaluation and multiple imaging techniques, which can be resource-consuming. Tests leveraging artificial intelligence (AI) hold the promise of automatically identifying and categorizing pathological features, enabling the timely diagnosis and treatment of eAMD.

Objectives: To determine the diagnostic accuracy of artificial intelligence (AI) as a triaging tool for exudative age-related macular degeneration (eAMD).

Search methods: We searched CENTRAL, MEDLINE, Embase, three clinical trials registries, and Data Archiving and Networked Services (DANS) for gray literature. We did not restrict searches by language or publication date. The date of the last search was April 2024.

Selection criteria: Included studies compared the test performance of algorithms with that of human readers to detect eAMD on retinal images collected from people with AMD who were evaluated at eye clinics in community or academic medical centers, and who were not receiving treatment for eAMD when the images were taken. We included algorithms that were either internally or externally validated or both.

Data collection and analysis: Pairs of review authors independently extracted data and assessed study quality using the Quality Assessment of Diagnostic Accuracy Studies-2 (QUADAS-2) tool with revised signaling questions. For studies that reported more than one set of performance results, we extracted only one set of diagnostic accuracy data per study based on the last development stage or the optimal algorithm as indicated by the study authors. For two-class algorithms, we collected data from the 2x2 table whenever feasible. For multi-class algorithms, we first consolidated data from all classes other than eAMD before constructing the corresponding 2x2 tables. Assuming a common positivity threshold applied by the included studies, we chose random-effects, bivariate logistic models to estimate summary sensitivity and specificity as the primary performance metrics.

Main results: We identified 36 eligible studies that reported 40 sets of algorithm performance data, encompassing over 16,000 participants and 62,000 images. We included 28 studies (78%) that reported 31 algorithms with performance data in the meta-analysis. The remaining nine studies (25%) reported eight algorithms that lacked usable performance data; we reported them in the qualitative synthesis. Study characteristics and risk of bias Most studies were conducted in Asia, followed by Europe, the USA, and collaborative efforts spanning multiple countries. Most studies identified study participants from the hospital setting, while others used retinal images from public repositories; a few studies did not specify image sources. Based on four of the 36 studies reporting demographic information, the age of the study participants ranged from 62 to 82 years. The included algorithms used various retinal image types as model input, such as optical coherence tomography (OCT) images (N = 15), fundus images (N = 6), and multi-modal imaging (N = 7). The predominant core method used was deep neural networks. All studies that reported externally validated algorithms were at high risk of bias mainly due to potential selection bias from either a two-gate design or the inappropriate exclusion of potentially eligible retinal images (or participants). Findings Only three of the 40 included algorithms were externally validated (7.5%, 3/40). The summary sensitivity and specificity were 0.94 (95% confidence interval (CI) 0.90 to 0.97) and 0.99 (95% CI 0.76 to 1.00), respectively, when compared to human graders (3 studies; 27,872 images; low-certainty evidence). The prevalence of images with eAMD ranged from 0.3% to 49%. Twenty-eight algorithms were reportedly either internally validated (20%, 8/40) or tested on a development set (50%, 20/40); the pooled sensitivity and specificity were 0.93 (95% CI 0.89 to 0.96) and 0.96 (95% CI 0.94 to 0.98), respectively, when compared to human graders (28 studies; 33,409 images; low-certainty evidence). We did not identify significant sources of heterogeneity among these 28 algorithms. Although algorithms using OCT images appeared more homogeneous and had the highest summary specificity (0.97, 95% CI 0.93 to 0.98), they were not superior to algorithms using fundus images alone (0.94, 95% CI 0.89 to 0.97) or multimodal imaging (0.96, 95% CI 0.88 to 0.99; P for meta-regression = 0.239). The median prevalence of images with eAMD was 30% (interquartile range [IQR] 22% to 39%). We did not include eight studies that described nine algorithms (one study reported two sets of algorithm results) to distinguish eAMD from normal images, images of other AMD, or other non-AMD retinal lesions in the meta-analysis. Five of these algorithms were generally based on smaller datasets (range 21 to 218 participants per study) yet with a higher prevalence of eAMD images (range 33% to 66%). Relative to human graders, the reported sensitivity in these studies ranged from 0.95 and 0.97, while the specificity ranged from 0.94 to 0.99. Similarly, using small datasets (range 46 to 106), an additional four algorithms for detecting eAMD from other retinal lesions showed high sensitivity (range 0.96 to 1.00) and specificity (range 0.77 to 1.00).

Authors' conclusions: Low- to very low-certainty evidence suggests that an algorithm-based test may correctly identify most individuals with eAMD without increasing unnecessary referrals (false positives) in either the primary or the specialty care settings. There were significant concerns for applying the review findings due to variations in the eAMD prevalence in the included studies. In addition, among the included algorithm-based tests, diagnostic accuracy estimates were at risk of bias due to study participants not reflecting real-world characteristics, inadequate model validation, and the likelihood of selective results reporting. Limited quality and quantity of externally validated algorithms highlighted the need for high-certainty evidence. This evidence will require a standardized definition for eAMD on different imaging modalities and external validation of the algorithm to assess generalizability.

PubMed Disclaimer

Conflict of interest statement

CK: no conflicts of interest to declare JL: no conflicts of interest to declare HZ: no conflicts of interest to declare SMN: grant from the National Eye Institute: National Institutes of Health, USA; payment to the institution. JCL: no conflicts of interest to declare IUS: no conflicts of interest to declare JKC: Siloam Vision funding by Genentech Foundation SL: grant from the National Eye Institute: National Institutes of Health, USA; payment to the institution; was Managing Editor of CEV@US but was not involved in the editorial process of this review PBG: no conflicts of interest to declare

Update of

  • doi: 10.1002/14651858.CD015522

Similar articles

Cited by

References

References to studies included in this review

Acharya 2017 {published data only}
    1. Acharya UR, Hagiwara Y, Koh JE, Tan JH, Bhandary SV, Rao A, et al. Automated screening tool for dry and wet age-related macular degeneration (ARMD) using pyramid of histogram of oriented gradients (PHOG) and nonlinear features. Journal of Computational Science 2017;20:41-51.
Alfahaid 2020—no CM {published data only}
    1. Alfahaid A, Morris T, Cootes T, Keane PA, Khalid H, Pontikos N, et al. A hybrid machine learning approach using LBP descriptor and PCA for age-related macular degeneration classification in OCTA images. Communications in Computer and Information Science. Medical Image Understanding and Analysis. MIUA 2019; 2019 July 24-29; Liverpool (UK) 2020;1065:231-41. [DOI: 10.1007/978-3-030-39343-4_20] - DOI
    1. Alfahaid A, Morris T. An automated age-related macular degeneration classification based on local texture features in optical coherence tomography angiography. Communications in Computer and Information Science. Medical Image Understanding and Analysis. MIUA 2018; 2018 July 9-11; Southampton (UK) 2018;894:189-200. [DOI: 10.1007/978-3-319-95921-4_19] - DOI
    1. Balaskas K, Alfahaid A, Khalid H, Sergouniotis P, Keane PA, Pontikos N. Machine learning for the automated interpretation of optical coherence tomography angiography for age-related macular degeneration. Investigative Ophthalmology & Visual Science 2019;60(9):Poster 3095.
Buzura 2022 {published data only}
    1. Loredana B, Loredana BM, Radu P, Horea D, Ramona G. Macular edema degeneration classification on OCT and fundus images with portable platform based on artificial intelligence methods. In: Jürgen P, Csilla G , editors(s). Biomedical Spectroscopy, Microscopy, and Imaging II; 2022 April 3-May 23; Strasbourg (France). Vol. 12144. spiedigitallibrary.org/conference-proceedings-of-SPIE/12144.toc: SPIE, 2022.
Celebi 2023 {published data only}
    1. Celebi AR, Bulut E, Sezer A. Artificial intelligence based detection of age-related macular degeneration using optical coherence tomography with unique image preprocessing. European Journal of Ophthalmology 2023;33(1):65-73. - PubMed
Chen 2022 {published data only}
    1. Chen M, Jin K, Yan Y, Liu X, Huang X, Gao Z, et al. Automated diagnosis of age-related macular degeneration using multi-modal vertical plane feature fusion via deep learning. Medical Physics 2022;49(4):2324-33. - PubMed
Chou 2021 {published data only}
    1. Chou YB, Hsu CH, Chen WS, Chen SJ, Hwang DK, Huang YM, et al. Deep learning and ensemble stacking technique for differentiating polypoidal choroidal vasculopathy from neovascular age-related macular degeneration. Scientific Reports 2021;11(1):7130. - PMC - PubMed
Deng 2016—no CM {published data only}
    1. Deng J, Xie X, Terry L, Wood A, White N, Margrain TH, et al. Age-related macular degeneration detection and stage classification using choroidal OCT images. In: Campilho A, Karray F, editor(s) Image Analysis and Recognition. ICIAR 2016. Lecture Notes in Computer Science 2016;9730:707-15. [DOI: 10.1007/978-3-319-41501-7_79] - DOI
Grassmann 2018 {published data only}
    1. Grassmann F, Mengelkamp J, Brandl C, Harsch S, Zimmermann ME, Linkohr B, et al. A deep learning algorithm for prediction of age-related eye disease study severity scale for age-related macular degeneration from color fundus photography. Ophthalmology 2018;125(9):1410-20. - PubMed
Haihong 2021a {published data only}
    1. E H, He J, Yuan L, Song M. Dual-modal deep learning model for auxiliary diagnosis of wet age-related macular degeneration AMD [用于湿性AMD辅助诊断的双模态深度学习模型]. Huazhong Keji Daxue Xuebao (Ziran Kexue Ban)/Journal of Huazhong University of Science and Technology (Natural Science Edition) 2021;49(12):64-70.
Haihong 2021b {unpublished data only}
    1. E H, He J, Hu T, Wang L, Yuan L, Zhang R, et al. KFWC: a knowledge-driven deep learning model for fine-grained classification of wet-AMD. arxiv.org/abs/2112.12386 (accessed 31 May 2023). - PubMed
Han 2022 {published data only}
    1. Han J, Choi S, Park JI, Hwang JS, Han JM, Lee HJ, et al. Classifying neovascular age-related macular degeneration with a deep convolutional neural network based on optical coherence tomography images. Scientific Reports 2022;12(1):2232. - PMC - PubMed
Haq 2018 {published data only}
    1. Haq A, Mir FJ, Yasin UU, Khan SA. Classification of wet aged related macular degeneration using optical coherence tomographic images. In: Branislav V, Jianhong Z, Antanas V , editors(s). Sixth International Conference on Machine Vision (ICMV 2013); 2013 November 16-17; London (UK). Vol. 9067. spie.org/Publications/Proceedings/Volume/9067: SPIE, 2013.
    1. Haq A, Wilk S. Chapter 5: Detection of wet age-related macular degeneration in OCT images: a case study. In: Innovations in Biomedical Engineering, Advances in Intelligence Systems and Computing. Vol. 623. Zabrze, Poland: Springer Verlag, 2018:43-51.
Heo 2020 {published data only}
    1. Heo TY, Kim KM, Min HK, Gu SM, Kim JH, Yun J, et al. Development of a deep-learning-based artificial intelligence tool for differential diagnosis between dry and neovascular age-related macular degeneration. Diagnostics (Basel, Switzerland) 2020;10(5):28. - PMC - PubMed
Hwang 2019 {published data only}
    1. Hwang DK, Hsu CC, Chang KJ, Chao D, Sun CH, Jheng YC, et al. Artificial intelligence-based decision-making for age-related macular degeneration. Theranostics 2019;9(1):232-45. - PMC - PubMed
Kang 2021—no CM {published data only}
    1. Kang EY, Yeung L, Lee YL, Wu CH, Peng SY, Chen YP, et al. A multimodal imaging-based deep learning model for detecting treatment-requiring retinal vascular diseases: model development and validation study. JMIR Medical Informatics 2021;9(5):e28868. - PMC - PubMed
Keel 2019 {published data only}
    1. He M, Li Z, Keel S, Chang R. A deep learning system for detecting glaucomatous optic neuropathy and agerelated macular degeneration based on color fundus photographs. Investigative Ophthalmology & Visual Science 2018;59(9):Poster 2086.
    1. He M, Li Z, Keel S, He Y, Meng W. A deep learning algorithm for detecting common eye diseases based on fundus photography. Clinical & Experimental Ophthalmology 2017;45 Suppl 1:54-79.
    1. Keel S, Le Z, Scheetz J, He M. The development and validation of a deep learning algorithm for the detection of neovascular age-related macular degeneration from color fundus photographs. Investigative Ophthalmology & Visual Science 2019;60(9):Poster 1358. - PubMed
    1. Keel S, Li Z, Scheetz J, Robman L, Phung J, Makeyeva G, et al. Development and validation of a deep-learning algorithm for the detection of neovascular age-related macular degeneration from colour fundus photographs. Clinical & Experimental Ophthalmology 2019;47(8):1009-18. - PubMed
Kunumpol 2017—no CM {published data only}
    1. Acharya UR, Mookiah MR, Koh JE, Tan JH, Noronha K, Bhandary SV, et al. Novel risk index for the identification of age-related macular degeneration using radon transform and DWT features. Computers in Biology and Medicine 2016;73:131-40. - PubMed
    1. Kunumpol P, Umpaipant W, Kanchanaranya N, Charoenpong T, Vongkittirux S, Kupakanjana T, et al. Automated age-related macular degeneration screening system using fundus images. In: 39th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC); 2017 July 11-15; Jeju (South Korea). 2017:1469-72. [DOI: 10.1109/EMBC.2017.8037112] - DOI - PubMed
Kuwayama 2019 {published data only}
    1. Kuwayama S, Ayatsuka Y, Yanagisono D, Uta T, Usui H, Kato A, et al. Automated detection of macular diseases by optical coherence tomography and artificial intelligence machine learning of optical coherence tomography images. Journal of Ophthalmology 2019;2019:6319581. - PMC - PubMed
Leingang 2023 {published data only}
    1. Leingang O, Bogunovic H, Reiter GS, Chakravarty A, Menten MJ, Holland R, et al. Deep learning-based detection of advanced AMD on retinal OCT from the UK Biobank dataset on behalf of the PINNACLE Consortium. Investigative Ophthalmology & Visual Science 2023;64(8):544.
    1. Leingang O, Bogunovic H, Riedl S, Chakravarty A, Menten MJ, Holland R, et al. Automated deep learning-based AMD stage detection in real-world OCT datasets. Investigative Ophthalmology & Visual Science 2022;63(7):2106-F0095.
    1. Leingang O, Riedl S, Mai J, Reiter GS, Faustmann G, Fuchs P, et al. Automated deep learning-based AMD detection and staging in real-world OCT datasets (PINNACLE study report 5). Scientific Reports 2023;13(1):19545. - PMC - PubMed
Lin 2020—no CM {published data only}
    1. Lin TC, Jheng YC, Chen SJ, Chiou SH. Artificial intelligence machine learning of optical coherence tomography angiography for the diagnosis of age-related macular degeneration. Investigative Ophthalmology & Visual Science 2020;61(7):Poster 2031.
Ma 2022 {published data only}
    1. Ma D, Kumar M, Khetan V, Sen P, Bhende M, Chen S, et al. Clinical explainable differential diagnosis of polypoidal choroidal vasculopathy and age-related macular degeneration using deep learning. Computers in Biology and Medicine 2022;143:105319. - PubMed
Matsuba 2019 {published data only}
    1. Matsuba S, Tabuchi H, Ohsugi H, Enno H, Ishitobi N, Masumoto H, et al. Accuracy of ultra-wide-field fundus ophthalmoscopy-assisted deep learning, a machine-learning technology, for detecting age-related macular degeneration. International Ophthalmology 2019;39(6):1269-75. - PubMed
Motozawa 2019 {published data only}
    1. Motozawa N, An G, Takagi S, Kitahata S, Mandai M, Hirami Y, et al. Optical coherence tomography-based deep-learning models for classifying normal and age-related macular degeneration and exudative and non-exudative age-related macular degeneration changes. Ophthalmology Therapy 2019;8(4):527-39. - PMC - PubMed
Priya 2014—no CM {published data only}
    1. Priya R, Aruna P. Automated diagnosis of age-related macular degeneration from color retinal fundus images. 3rd International Conference on Electronics Computer Technology; 2011 April 8-10; Kanyakumari (India) 2011;2:227-30. [DOI: 10.1109/ICECTECH.2011.5941690] - DOI
    1. Priya R, Aruna P. Automated diagnosis of age-related macular degeneration using machine learning techniques. International Journal of Computer Applications in Technology 2014;49(2):157-65.
Ravenscroft 2017 {published data only}
    1. Ravenscroft D, Deng J, Xie X, Terry L, Margrain TH, North RV, et al. AMD classification in choroidal OCT using hierarchical texton mining. In: Advanced concepts for intelligent vision systems. ACIVS 2017. Lecture Notes in Computer Science; 2017 September 18-21; Antwerp (Belgium). Vol. 10617. 2017:237-48.
    1. Ravenscroft D, Deng J, Xie X, Terry L, Margrain TH, North RV, et al. Learning feature extractors for AMD classification in OCT using convolutional neural networks. In: 25th European Signal Processing Conference (EUSIPCO); 2017 August 27-September 2; Kos (Greece). 2017:51-5. [DOI: 10.23919/EUSIPCO.2017.8081167] - DOI
    1. Terry L, Deng L, Xie X, Margrain T, North Rv, Fergusson J, et al. Automated classification of age-related macular degeneration using choroidal optical coherence tomography imaging-a pilot study. Investigative Ophthalmology & Vision Science 2016;57(12):45.
    1. Terry L, Ravenscroft D, Deng J, Xie X, White N, Margrain TH, et al. Feature analysis of the choroid in optical coherence tomography images-limitations and opportunities. Investigative Ophthalmology & Visual Science 2019;60(9):3461.
Sabi 2022 {published data only}
    1. Sabi S, Jacob JM, Gopi VP. Classification of age-related macular degeneration using DAG-CNN architecture. Biomedical Engineering - Applications, Basis and Communications 2022;34(6):2250037. [DOI: 10.4015/S1016237222500375] - DOI
Serener 2019 {published data only}
    1. Kaymak S, Serener A. Automated age-related macular degeneration and diabetic macular edema detection on OCT images using deep learning. In: IEEE 14th International Conference on Intelligent Computer Communication and Processing (ICCP); 2018 September 6-8; Cluj-Napoca (Romania). 2018:265-9. [DOI: 10.1109/ICCP.2018.8516635] - DOI
    1. Serener A, Serte S. Dry and wet age-related macular degeneration classification using OCT images and deep learning. In: Scientific Meeting on Electrical-Electronics & Biomedical Engineering and Computer Science (EBBT); 2019 April 24-26; Istanbul (Turkey). 2019:1-4. [DOI: 10.1109/EBBT.2019.8741768] - DOI
Tak 2021 {published data only}
    1. Tak N, Reddy AJ, Martel J, Martel JB. Clinical wide-field retinal image deep learning classification of exudative and non-exudative age-related macular degeneration. Cureus 2021;13(8):e17579. - PMC - PubMed
Thakoor 2022 {published data only}
    1. Thakoor K, Bordbar D, Yao J, Diaconita V, Scherbakova I, Lin W, et al. A hybrid deep learning system to distinguish late stages of AMD and to compare expert vs. machine AMD risk features. Investigative Ophthalmology & Visual Science 2021;62:2146.
    1. Thakoor K, Bordbar D, Yao J, Moussa O, Chen R, Sajda P. Hybrid 3D-2D deep learning for detection of neovascularage-related macular degeneration using optical coherence tomography B-scans and angiography volumes. In: IEEE 18th International Symposium on Biomedical Imaging (ISBI); 2021 April 13-16; Nice (France). 2021:1600-4. [DOI: 10.1109/ISBI48211.2021.9434111] - DOI
    1. Thakoor KA, Yao J, Bordbar D, Moussa O, Lin W, Sajda P, et al. A multimodal deep learning system to distinguish late stages of AMD and to compare expert vs. AI ocular biomarkers. Scientific Reports 2022;12(1):2585. - PMC - PubMed
Tranos 2018—no CM {published data only}
    1. Tranos P, Karassavidou E, Tsirampidou E, Stavrakas P, Chrissafis C. Evaluation of an artificial intelligence clinical decision support suite for diabetic retinopathy and age related macular degeneration screening. Acta Ophthalmologica 2018;96:127.
Treder 2018 {published data only}
    1. Treder M, Lauermann JL, Eter N. Automated detection of exudative age-related macular degeneration in spectral domain optical coherence tomography using deep learning. Graefes Archive for Clinical and Experimental Ophthalmology 2018;256(2):259-65. - PubMed
Venhuizen 2017 {published data only}
    1. Venhuizen FG, Van Ginneken B, Van Asten F, Van Grinsven Mjjp, Fauser S, Hoyng CB, et al. Automated staging of age-related macular degeneration using optical coherence tomography. Investigative Ophthalmology and Vision Science 2017;58(4):2318-28. - PubMed
Wang W 2022 {published data only}
    1. Wang W, Li X, Xu Z, Yu W, Zhao J, Ding D, et al. Learning two-stream CNN for multi-modal age-related macular degeneration categorization. IEEE Journal of Biomedical and Health Informatics 2022;26(8):4111-22. - PubMed
    1. Wang W, Li X, Xu Z, Yu W, Zhao J, Ding D, et al. Learning two-stream CNN for multi-modal age-related macular degeneration categorization. arxiv.org/abs/2012.01879 (accessed 31 May 2023). - PubMed
    1. Wang W, Xu Z, Yu W, Zhao J, Yang J, He F, et al. Two-stream CNN with loose pair training for multi-modal AMD categorization. arxiv.org/abs/1907.12023 (accessed 31 May 2023).
Wang Y 2020 {published data only}
    1. Wang Y, Lucas M, Furst J, Fawzi AA, Raicu D. Explainable deep learning for biomarker classification of oct images. In: IEEE 20th International Conference on Bioinformatics and Bioengineering (BIBE); 2020 October 26-28; Cincinnati (OH). 2020:204-10. [DOI: 10.1109/BIBE50027.2020.00041] - DOI
    1. Wang Y, Ma X, Weddell R, Okemgbo A, Rein D, Fawzi AA, et al. Detecting age-related macular degeneration (AMD) biomarker images using MFCC and texture features. In: Society of Photo-Optical Instrumentation Engineers (SPIE). 2020:11314.
Wongchaisuwat 2022 {published data only}
    1. Wongchaisuwat P, Thamphithak R, Jitpukdee P, Wongchaisuwat N. Application of deep learning for automated detection of polypoidal choroidal vasculopathy in spectral domain optical coherence tomography. Translational Visual Science & Technology 2022;11(10):16. - PMC - PubMed
Yang SZ 2022—no CM {published data only}
    1. Yang S, Zhang X, Zhao H, Li H, Liu H, Wang N. AMD classification based on adversarial domain adaptation with center loss. In: IEEE 19th International Sympsosium on Biomedical Imaging (ISBI); 2022 March 28-31; Kolkata (India). 2022:1-5. [DOI: 10.1109/ISBI52829.2022.9761676] - DOI

References to studies excluded from this review

Abirami 2022 {published data only}
    1. Abirami MS, Vennila B, Suganthi K, Kawatra S, Vaishnava A. Detection of choroidal neovascularization (CNV) in retina OCT images using VGG16 and DenseNet CNN. Wireless Personal Communications 2022;127(3):2569-83.
Adam 2023 {published data only}
    1. Adam MK, Jain M, Kim E, Shah B, Crowley A, Lee J, et al. Clustering and treatment patterns in neovascular age-related macular degeneration and diabetic macular edema: a United States claims database study. Investigative Ophthalmology & Visual Science 2026;64(8):1744.
Agurto 2011 {published data only}
    1. Agurto C, Barriga ES, Murray V, Nemeth S, Crammer R, Bauman W, et al. Automatic detection of diabetic retinopathy and age-related macular degeneration in digital fundus images. Investigative Ophthalmolgy and Visual Science 2011;52(8):5862-71. - PMC - PubMed
Akinniyi 2023 {published data only}
    1. Akinniyi O, Rahman MM, Sandhu HS, El-Baz A, Khalifa F. Multi-stage classification of retinal OCT using multi-scale ensemble deep architecture. Bioengineering 2023;10(7):10. - PMC - PubMed
Alsayat 2023 {published data only}
    1. Alsayat A, Elmezain M, Alanazi S, Alruily M, Mostafa AM, Said W. Multi-layer preprocessing and U-Net with residual attention block for retinal blood vessel segmentation. Diagnostics 2023;13(21):1. - PMC - PubMed
An 2019 {published data only}
    1. An G, Akiba M, Yokota H, Motozawa N, Takagi S, Mandai M, et al. Deep learning classification models built with two-step transfer learning for age related macular degeneration diagnosis. In: 41st Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC); 2019 July 23-27; Berlin (Germany). 2019:2049-52. - PubMed
Arulselvam 2022 {published data only}
    1. Arulselvam T, Joseph SJ. Detection and classification of retinal disease of the eye using optimal deep assimilation learning. NeuroQuantology 2022;20(10):3050-62.
Ashok 2023 {published data only}
    1. Ashok N, Gangadhara RK. Detection of retinal diseases using advanced deep learning algorithms. In: 2023 International Conference on Sustainable Communication Networks and Application, 2023 November 15-17; Theni, India. 2023:1503-9.
Ayhan 2022 {unpublished data only}
    1. Ayhan MS, Faber H, Kühlewein L, Inhoffen W, Aliyeva G, Ziemssen F, et al. Multi-task learning for activity detection in neovascular age-related macular degeneration. MedRxiv 2023 [Preprint]. [DOI: 10.1101/2022.06.13.22276315] - DOI - PMC - PubMed
Aykat 2023 {published data only}
    1. Aykat S, Senan S. Advanced detection of retinal diseases via novel hybrid deep learning approach. Traitement du Signal 2023;40(6):2367-82.
Bansal 2024 {published data only}
    1. Bansal P, Harjai N, Saif M, Mugloo SH, Kaur P. Utilization of big data classification models in digitally enhanced optical coherence tomography for medical diagnostics. Neural Computing & Applications 2024;36(1):225-39.
Bennett 2018 {published data only}
    1. Bennett M, Demaine K, Milroy C, Stark B. The retina metric CNN (convolutional neural network) study: using an artificial intelligence platform to learn and improve patient outcomes. Investigative Ophthalmology & Visual Science 2018;59:1725.
Berlin 2023 {published data only}
    1. Berlin A, Messinger JD, Balaratnasingam C, Mendis R, Ferrara D, Freund KB, et al. Imaging histology correlations of intraretinal fluid in neovascular age-related macular degeneration. Translational Vision Science & Technology 2023;12(11):13. - PMC - PubMed
Bhowmik 2019 {published data only}
    1. Bhowmik A, Kumar S, Bhat N. Eye disease prediction from optical coherence tomography images with transfer learning. In: In: Macintyre J, Iliadis L, Maglogiannis I, Jayne C, editor(s). Engineering Applications of Neural Networks. EANN 2019. Communications in Computer and Information Science. Vol. 1000. 2019:104-14.
Bhuiyan 2021 {published data only}
    1. Alauddin S, Bhuiyan A, Govindaiah A, Otero-Marquez O, Gildengorn R, Radell JE, et al. A prospective trial of an artificial intelligence based telemedicine platform to stratify severity of age-related macular degeneration (AMD). Investigative Ophthalmology & Visual Science 2020;61(7):1843.
    1. Bhuiyan A, Govindaiah A, Alauddin S, Otero-Marquez O, Smith RT. Combined automated screening for age-related macular degeneration and diabetic retinopathy in primary care settings. Annals of Eye Science 2021;6:12. - PMC - PubMed
    1. Bhuiyan A, Govindaiah A, Smith RT. A prediction model for risk of progression to late age-related macular degeneration (AMD). Investigative Ophthalmology & Visual Science 2018;59(9):3214.
    1. Bhuiyan A, Wong TY, Ting DS, Govindaiah A, Souied EH, Smith RT. Artificial intelligence to stratify severity of age-related macular degeneration (amd) and predict risk of progression to late AMD. Translational Vision Science and Technology 2020;9(2):25. - PMC - PubMed
    1. Govindaiah A, Hussain MA, Smith RT, Bhuiyan A. Deep convolutional neural network based screening and assessment of age-related macular degeneration from fundus images. In: IEEE 15th International Symposium on Biomedical Imaging (ISBI 2018); 2018 April 4-7; Washington, DC (USA). 2018:1525-8.
Borrelli 2024 {published data only}
    1. Borrelli E, Oakley JD, Iaccarino G, Russakoff DB, Battista M, Grosso D, et al. Deep-learning based automated quantification of critical optical coherence tomography features in neovascular age-related macular degeneration. Eye (London, England) 2024;38(3):537-44. - PMC - PubMed
Burlina 2019 {published data only}
    1. Burlina P, Freund DE, Dupas B, Bressler N. Automatic screening of age-related macular degeneration and retinal abnormalities. In: Annual International Conference of the IEEE Engineering in Medicine and Biology Society; 2011 August 20-September 3; Boston (MA). 2011:3962-6. - PubMed
    1. Burlina P, Freund DE, Joshi N, Wolfson Y, Bressler NM. Detection of age-related macular degeneration via deep learning. In: IEEE 13th International Symposium on Biomedical Imaging (ISBI); 2016 April 13-16; Prague (Czech Republic). 2016:184-8.
    1. Burlina P, Joshi N, Pacheco KD, Freund DE, Kong J, Bressler NM. Utility of deep learning methods for referability classification of age-related macular degeneration. JAMA Ophthalmology 2018;136(11):1305-7. - PMC - PubMed
    1. Burlina P, Pacheco KD, Joshi N, Freund DE, Bressler NM. Comparing humans and deep learning performance for grading AMD: A study in using universal deep features and transfer learning for automated AMD analysis. Computers in Biology and Medicine 2017;82:80-6. - PMC - PubMed
    1. Burlina PM, Joshi N, Pacheco KD, Liu TY, Bressler NM. Assessment of deep generative models for high-resolution synthetic retinal image generation of age-related macular degeneration. JAMA Ophthalmology 2019;137(3):258-64. - PMC - PubMed
Butola 2020 {published data only}
    1. Butola A, Prasad DK, Ahmad A, Dubey V, Qaiser D, Srivastava A, et al. Deep learning architecture "LightOCT" for diagnostic decision support using optical coherence tomography images of biological samples. Biomedical Optics Express 2020;11(9):5017-31. - PMC - PubMed
Cai 2020 {published data only}
    1. Cai L, Hinkle JW, Arias D, Gorniak RJ, Lakhani PC, Flanders AE, et al. Applications of artificial intelligence for the diagnosis, prognosis, and treatment of age-related macular degeneration. International Ophthalmology Clinics 2020;60(4):147-68. - PubMed
ChacinRuiz 2023 {published data only}
    1. Chacin Ruiz EA, Swindle-Reilly KE, Ford Versypt AN. Experimental and mathematical approaches for drug delivery for the treatment of wet age-related macular degeneration. Journal of Controlled Release 2023;363:464-83. - PMC - PubMed
Chen Q 2019 {published data only}
    1. Chen Q, Peng Y, Keenan T, Dharssi S, Agro NE, Wong WT, et al. A multi-task deep learning model for the classification of age-related macular degeneration. AMIA Summits on Translational Science Proceedings 2019;2019:505-14. - PMC - PubMed
    1. Chen Q, Peng Y, Keenan T, Dharssi S, Agron E, Wong WT, et al. A multi-task deep learning model for the classification of age-related macular degeneration. arxiv.org/abs/1812.00422 (accessed 28 March 2023). [DOI: 10.48550/arXiv.1812.00422] - DOI
Chen S 2021 {published data only}
    1. Chen S, Chen M, Ma W. Research on automatic classification of optical coherence tomography retina image based on multi-channel. Chinese Journal of Lasers [Zhongguo Jiguang] 2021;48(23):2307001. [DOI: 10.3788/CJL202148.2307001] - DOI
Chetoui 2020 {published data only}
    1. Chetoui M, Akhloufi MA. Deep retinal diseases detection and explainability using OCT images. In: Image Analysis and Recognition. ICIAR 2020. Lecture Notes in Computer Science. Campilho A, Karray F, Wang Z, editor(s). Vol. 12132. 2020:358-66.
Choudhary 2023 {published data only}
    1. Choudhary A, Ahlawat S, Urooj S, Pathak N, Lay-Ekuakille A, Sharma N. A deep learning-based framework for retinal disease classification. Healthcare 2023;11(2):10. - PMC - PubMed
Clark 2019 {published data only}
    1. Clark C, Ouellette M, Csaky K. Training players to analyze age-related macular degeneration optical coherence tomography scans using a human computation game. In: IEEE 7th International Conference on Serious Games and Applications for Health (SeGAH); 2019 August 5-7; Kyoto (Japan). 2019:1-7.
Coleman 2014 {published data only}
    1. Coleman DJ, Silverman RH, Rondeau MJ, Chang S. Signal processing in high resolution ultrasonic imaging of tissue characterization and perfusion of the choroid. Investigative Ophthalmology & Visual Science 2014;55(13):5856.
Das 2019 {published data only}
    1. Das V, Dandapat S, Bora PK. Multi-scale deep feature fusion for automated classification of macular pathologies from OCT images. Biomedical Signal Processing and Control 2019;54:101605.
Deak 2023 {published data only}
    1. Deak G, Gerendas BS, Mylonas G, Weigert G, Michl M, Goldbach F, et al. Concordance of OCT and FA-based MNV classifications in neovascular AMD and correlation with fluid volumes. Investigative Ophthalmology & Visual Science 2023;64(8):288.
De Sisternes 2017 {published data only}
    1. De Sisternes L, Jonna G, Moss J, Marmor MF, Leng T, Rubin DL. Automated intraretinal segmentation of SDOCT images in normal and age-related macular degeneration eyes. Biomedical Optics Express 2017;8(3):1926-49. - PMC - PubMed
Dhaoui 2023 {published data only}
    1. Dhaoui F, Zrelli A. Retinal diseases classification system using OCT images combined with CNN models. In: 2023 International Symposium on Networks, Computers and Communications, 2023 October 23-26; Doha, Qatar. 2023.
Do 2023 {published data only}
    1. Do MT, Huynh HN, Tran TN, Hoang TL. Prediction of retina damage in optical coherence tomography image using Xception architecture model. In: 5th IEEE Eurasia Conference on Biomedical Engineering, Healthcare and Sustainability, 2023 June 2-4; Tainan, Taiwan. 2023:58-61.
El‐Den 2023 {published data only}
    1. El-Den NN, Naglah A, Elsharkawy M, Ghazal M, Alghamdi NS, Sandhu H, et al. Scale-adaptive model for detection and grading of age-related macular degeneration from color retinal fundus images. Scientific Reports 2023;13(1):9590. - PMC - PubMed
Emre 2023 {published data only}
    1. Emre T, Oghbaie M, Chakravarty A, Rivail A, Riedl S, Mai J, et al. Pretrained deep 2.5D models for efficient predictive modeling from retinal OCT: a PINNACLE study report. In: 10th International Workshop on Ophthalmic Medical Image Analysis, 2023 October 12; Vancouver, Canada. 2023:132-41.
Fazekas 2022 {unpublished data only}
    1. Fazekas B, Aresta G, Lachinov D, Riedl S, Mai J, Schmidt-Erfurth U, et al. SD-layernet: semi-supervised retinal layer segmentation in OCT using disentangled representation with anatomical priors. In: Wang L, Dou Q, Fletcher PT, Speidel S, Li S, editor(s). Medical Image Computing and Computer Assisted Intervention - MICCAI 2022. Lecture Notes in Computer Science. Vol. 13438. 2023:320-9.
Feng 2023 {published data only}
    1. Feng W, Duan M, Wang B, Du Y, Zhao Y, Wang B, et al. Automated segmentation of choroidal neovascularization on optical coherence tomography angiography images of neovascular age-related macular degeneration patients based on deep learning. Journal of Big Data 10;1:111.
Ganjdanesh 2022 {published data only}
    1. Ganjdanesh A, Zhang J, Chew EY, Ding Y, Huang H, Chen W. LONGL-Net: temporal correlation structure guided deep learning model to predict longitudinal age-related macular degeneration severity. PNAS Nexus 2022;1(1):pgab003. - PMC - PubMed
Garcia‐Floriano 2019 {published data only}
    1. Garcia-Floriano A, Ferreira-Santiago A, Camacho-Nieto O, Yanez-Marquez C. A machine learning approach to medical image classification: detecting age-related macular degeneration in fundus images. Computers and Electrical Engineering 2019;75:218-29.
Goldbach 2023 {published data only}
    1. Goldbach F, Gerendas BS, Leingang O, Alten T, Brugger J, Bogunovic H, et al. Human expert grading versus automated quantification of fluid volumes in nAMD, DME and BRVO. Investigative Ophthalmology & Visual Science 2023;64(8):1286.
Gomariz 2022 {published data only}
    1. Gomariz A, Lu H, Li Y, Albrecht T, Maunz A, Benmansour F, et al. A unified deep learning approach for OCT segmentation from different devices and retinal diseases. Investigative Ophthalmology & Visual Science 2022;63(7):2053-F0042.
Gong 2019 {published data only}
    1. Gong Y, Gu Z, Hu Y, Liao Y, Ye T, Liu D, et al. The application value of deep learning OCT on wet age-related macular degeneration assisted diagnosis [基于深度学习OCT辅助诊断湿性年龄相关性黄班变性算法的应用]. Chinese Journal of Experimental Ophthalmology [Zhonghua Shiyan Yanke Zazhi] 2019;37(8):658-62.
Goriya 2023 {published data only}
    1. Goriya M, Amrutiya Z, Ghadiya A, Vasa J, Patel B. Classification of choroidal neovascularization (CNV) from optical coherence tomography (OCT) Images using efficient fine-tuned resnet and densenet deep learning models. In: 7th International Conference on Information and Communication Technology for Intelligent Systems, 2023 April 27-28; Ahmedabad, India. 2023.
Grewal 2020 {published data only}
    1. Grewal PS, Lapere SR, Rudnisky CJ, Somani R, Tennant MT. Distinguishing central serous chorioretinopathy from neovascular age-related macular degeneration: a prospective study. Journal of Vitreoretinal Diseases 2020;4(4):293-9. - PMC - PubMed
Habra 2022 {published data only}
    1. Habra O, Gallardo M, Meyer Z, Westram T, De Zanet S, Jaggi D, et al. Evaluation of an artificial intelligence-based detector of sub- and intraretinal fluid on a large set of optical coherence tomography volumes in age-related macular degeneration and diabetic macular edema. Ophthalmologica. Journal International d'Ophtalmologie [International Journal of Ophthalmology] 2022;245(6):516-27. - PubMed
Haddad 2023 {published data only}
    1. Haddad Z, Yaya BM, Zgolli H, Sidibe D, Tabia H, Khlifa N. Retinal pathologies detection in OCT images based on bilinear convolutional neural network. In: 17th International Conference on INnovations in Intelligent SysTems and Applications, 2023 September 20-23; Hammamet, Tunisi. 2023.
Han 2023a {published data only}
    1. Han K, Huang C, Liu H. Transfer learning and interpretable analysis based quality assessment of synthetic optical coherence tomography images by Cgan model for retinal diseases. papers.ssrn.com/sol3/papers.cfm?abstract_id=4342096 (first received 29 Jan 2023).
Haq 2021 {published data only}
    1. Haq A, Fariza A, Ramadijanti N. Automatic detection of retinal diseases in optical coherence tomography images using convolutional neural network. In: International Electronics Symposium (IES); 2021 September 29-30; Surabaya (Indonesia). 2021:343-8.
Hartmann 2023 {published data only}
    1. Hartmann J, Maloca P, Huwyler C, Melchior M, Suter S. Comparative deep learning architectures to detect tiny features in ophthalmic imaging. In: 10th IEEE Swiss Conference on Data Science, 2023 June 22-23; Zurich, Switzerland. 2023:112-9.
Hernandez 2024 {published data only}
    1. Hernandez RJ, El-Bouri WK, Madhusudhan S, Zheng Y. AI and the eye - integrating deep learning and in silico simulations to optimise diagnosis and treatment of wet macular degeneration. www.medrxiv.org/content/10.1101/2024.02.13.23299445v1 (first received 14 February 2024).
Ho 2021 {published data only}
    1. Ho WH, Huang TH, Yang PY, Chou JH, Huang HS, Chi LC, et al. Artificial intelligence classification model for macular degeneration images: a robust optimization framework for residual neural networks. BMC Bioinformatics 2021;22 Suppl 5:148. - PMC - PubMed
Hogg 2023 {published data only}
    1. Hogg HD, Brittain K, Teare D, Talks J, Balaskas K, Keane P. Safety and efficacy of an artificial intelligence-enabled decision tool for treatment decisions in neovascular age-related macular degeneration and an exploration of clinical pathway integration and implementation: protocol for a multi-methods validation. BMJ Open 2023;13(2):e069443. - PMC - PubMed
Holland 2022 {published data only}
    1. Holland R, Menten MJ, Leingang O, Bogunovic H, Hagag AM, Kaye R, et al. Self-supervised pretraining enables deep learning-based classification of AMD with fewer annotations. Investigative Ophthalmology & Visual Science 2022;63(7):3004-F0274.
Holland 2023 {published data only}
    1. Holland R, Leingang O, Holmes C, Anders P, Kaye R, Riedl S, et al. Clustering disease trajectories in contrastive feature space for biomarker proposal in age-related macular degeneration. In: 26th International Conference on Medical Image Computing and Computer-Assisted Intervention, 2023 October 8-12; Vancouver, Canada. Vol. 14226. 2023:724-34.
Hossain 2023 {published data only}
    1. Hossain KF, Kamran SA, Ong J, Lee AG, Tavakkoli A. Revolutionizing space health (Swin-FSR): advancing super-resolution of fundus images for SANS visual assessment technology. arxiv.org/abs/2308.06332 (first received 11 Aug 2023).
Hu 2023 {published data only}
    1. Hu M, Wang J, Wynne J, Liu T, Yang X. A vision-GNN framework for retinopathy classification using optical coherence tomography. In: Medical Imaging 2023: Computer-Aided Diagnosis, 2023 February 19-23; San Diego, United States. 2023:12465.
Huang 2023 {published data only}
    1. Huang X, Ai Z, Wang H, She C, Feng J, Wei Q, et al. GABNet: global attention block for retinal OCT disease classification. Front 2023;17:1143422. - PMC - PubMed
Interlenghi 2023 {published data only}
    1. Interlenghi M, Sborgia G, Venturi A, Sardone R, Pastore V, Boscia G, et al. A radiomic-based machine learning system to diagnose age-related macular degeneration from ultra-widefield fundus retinography. Diagnostics 2023;13(18):15. - PMC - PubMed
ISRCTN48855678 {published data only}
    1. ISRCTN48855678. Early detection of wet age-related macular degeneration (AMD). isrctn.com/ISRCTN48855678 (first received 18 November 2014). [DOI: 10.1186/ISRCTN48855678] - DOI
Jang 2023 {published data only}
    1. Jang B, Lee SY, Kim C, Park UC, Kim YG, Lee EK. Preliminary analysis of predicting the first recurrence in patients with neovascular age-related macular degeneration using deep learning. BMC Ophthalmology 2023;23(1):499. - PMC - PubMed
JeyaPrabha 2024 {published data only}
    1. JeyaPrabha A, SameeraFathimal M, Meghana GR, AngelineKirubha SP. Application program interface for automatic segmentation of retinal layers and fluids in optical coherence tomography - neovascular age related macular degeneration retinal images using deep learning models. International Journal of Imaging Systems and Technology 2024;34(2):1-14.
Jin 2022 {published data only}
    1. Jin K, Yan Y, Chen M, Wang J, Pan X, Liu X, et al. Multimodal deep learning with feature level fusion for identification of choroidal neovascularization activity in age-related macular degeneration. Acta Ophthalmology (Oxford) 2022;100(2):e512-20. - PubMed
Jones 2023 {published data only}
    1. Jones CK, Li B, Wu JH, Nakaguchi T, Xuan P, Liu TY. Comparative analysis of alignment algorithms for macular optical coherence tomography imaging. International Journal of Retina and Vitreous 2023;9(1):60. - PMC - PubMed
Kamran 2021 {published data only}
    1. Amit KS, Sourajit S, Shihab SA, Alireza T. A comprehensive set of novel residual blocks for deep learning architectures for diagnosis of retinal diseases from optical coherence tomography images. In: Deep Learning Applications, Volume 2. Advances in Intelligent Systems and Computing. Vol. 1232. Deutschland GmbH: Springer Science and Business Media , 2021:25-48.
Kang 2023 {published data only}
    1. Kang C, Lin JC, Zhang H, Scott IU, Kalpathy-Cramer J, Liu SH, et al. Artificial intelligence for diagnosing exudative age-related macular degeneration. Cochrane Database of Systematic Reviews (Online) 2023, Issue 1. Art. No: CD015522. [DOI: 10.1002/14651858.CD015522] - DOI - PMC - PubMed
Kankanahalli 2013 {published data only}
    1. Kankanahalli S, Burlina PM, Wolfson Y, Freund DE, Bressler NM. Automated classification of severity of age-related macular degeneration from fundus photographs. Investigative Ophthalmology & Visual Science 2013;54(3):1789-96. - PubMed
Kayadibi 2023 {published data only}
    1. Kayadibi S, Guraksin GE. An explainable fully dense fusion neural network with deep support vector machine for retinal disease determination. International Journal of Computational Intelligence Systems 2023;16(1):28.
Khalaf 2023 {published data only}
    1. Khalaf NB, Aljobouri HK, Najim MS. Identification and classification of retinal diseases by using deep learning models. In: 2023 International Conference on Smart Applications, Communications and Networking, 2023 July 25-27; Istanbul, Turkey. 2023.
Kikuchi 2023 {published data only}
    1. Kikuchi Y, Gomariz A, Li Y, Lu H, Albrecht T, Ferrara D. Device adaptation of optical coherence tomography (OCT) retinal layer segmentation algorithm using unlabeled target data. Investigative Ophthalmology & Visual Science 2023;64(8):1107.
Kim 2020 {published data only}
    1. Kim J, Tran L. Ensemble learning based on convolutional neural networks for the classification of retinal diseases from optical coherence tomography images. In: IEEE 33rd International Symposium on Computer-Based Medical Systems (CBMS); 2020 July 28-30; Rochester (MN). Virtual, Online, USA: Institute of Electrical and Electronics Engineers Inc., 2020:532-7.
Kim 2023 {published data only}
    1. Kim J, Tran L. Ensemble convolutional neural networks for the classification and visualization of retinal diseases in optical coherence tomography images. In: 36th IEEE International Symposium on Computer-Based Medical Systems, 2023 June 22-24; L'Aquila, Italy. 2023:123-8.
Kumar 2023 {published data only}
    1. Kumar Y, Gupta S. Deep transfer learning approaches to predict glaucoma, cataract, choroidal neovascularization, diabetic macular edema, drusen and healthy eyes: an experimental review. Archives of Computational Methods in Engineering 2023;30(1):521-41.
Law 2017 {published data only}
    1. Law SK, Small KW, Caprioli J. Peripapillary retinal nerve fiber measurement with spectral-domain optical coherence tomography in age-related macular degeneration. Vision (Basel, Switzerland) 2017;1(4):14. - PMC - PubMed
Leandro 2023 {published data only}
    1. Leandro I, Lorenzo B, Aleksandar M, Dario M, Rosa G, Agostino A, et al. OCT-based deep-learning models for the identification of retinal key signs. Scientific Reports 2023;13(1):14628. - PMC - PubMed
Li 2024 {published data only}
    1. Li M, Shen Y, Wu R, Huang S, Zheng F, Chen S, et al. High-accuracy 3D segmentation of wet age-related macular degeneration via multi-scale and cross-channel feature extraction and channel attention. Biomedical Optics Express 2024;15(2):1115-31. - PMC - PubMed
Liaskos 2019 {published data only}
    1. Liaskos M, Asvestas PA, Matsopoulos GK, Charonis A, Anastassopoulos V. Detection of retinal pigment epithelium detachment from OCT images using multiscale Gaussian filtering. Technology and Health Care 2019;27(3):301-16. - PubMed
Liew 2023 {published data only}
    1. Liew A, Agaian S, Benbelkacem S. Distinctions between choroidal neovascularization and age macular degeneration in ocular disease predictions via multi-size kernels xicho-weighted median patterns. Diagnostics 2023;13(4):14. - PMC - PubMed
Li P 2023 {published data only}
    1. Li P, Liang L, Gao Z, Wang X. AMD-Net: automatic subretinal fluid and hemorrhage segmentation for wet age-related macular degeneration in ocular fundus images. Biomedical Signal Processing and Control 2023;80:104262.
Li S 2020 {published data only}
    1. Li S, Quan Z. Attention-aware convolutional neural network for age-related macular degeneration classification. In: 12th International Conference on Communication Software and Networks (ICCSN); 2020 June 12-15; Chongqing (China). Chongqing, China: Institute of Electrical and Electronics Engineers Inc., 2020:264-9.
Liu 2023 {published data only}
    1. Liu TY, Liu Y, Jones C. Prediction of imminent conversion to neovascular age-related macular degeneration using deep learning and optical coherence tomography images. Investigative Ophthalmology & Visual Science 2023;64(8):271.
Lopez‐Varela 2022 {published data only}
    1. Lopez-Varela E, Vidal PL, Pascual NO, Novo J, Ortega M. Fully-automatic 3d intuitive visualization of age-related macular degeneration fluid accumulations in OCT cubes. Journal of Digital Imaging 2022;35(5):1271-82. - PMC - PubMed
Lu 2023 {published data only}
    1. Lu H, Maunz A. Optical coherence tomography segmentation of retinal fluids using deep learning. Investigative Ophthalmology & Visual Science 2023;64(8):1124.
Malathy 2021 {published data only}
    1. Malathy C, Das S. Diagnosis of diseases from retinal images using support vector machine. International Journal of Healthcare Technology and Management 2021;18(3-4):275-92.
Mandal 2023 {published data only}
    1. Mandal AC, Phatak A. Optimizing deep learning based retinal diseases classification on optical coherence tomography scans. In: Optical Coherence Imaging Techniques and Imaging in Scattering Media V 2023, 2023 June 25-29; Munich, Germany. 2023:12632.
Mares 2023 {published data only}
    1. Mares V, Schmidt-Erfurth UM, Leingang O, Fuchs P, Nehemy MB, Bogunovic H, et al. Approved AI-based fluid monitoring to identify morphological and functional treatment outcomes in neovascular age-related macular degeneration in real-world routine. British Journal Ophthalmology 2023;29:37775259. - PubMed
Marques 2020 {published data only}
    1. Marques JP, Pires J, Simao J, Marques M, Gil JQ, Lains I, et al. Validation of retmarkerAMD as a semiautomatic grading software for AMD. Eye (London, England) 2020;34(3):600-2. - PMC - PubMed
Matta 2022 {published data only}
    1. Matta S, Lamard M, Lecat C, Carette R, Basset F, Le Guilcher L, et al. Assessing generalization of an automatic diagnosis system of ocular anomalies. Investigative Ophthalmology & Visual Science 2022;63(7):2984-F0254.
Maurya 2024 {published data only}
    1. Maurya R, Pandey NN, Joshi RC, Dutta MK. MacD-Net: an automatic guided-ensemble approach for macular pathology detection using optical coherence tomography images. International Journal of Imaging Systems and Technology 2024;34(1):e22954.
Meng 2023 {published data only}
    1. Meng L, Xi X, Wang M, Tan T, Yang J, Liu X. Semi-supervised adaptive weighted network for CNV typing in OCT images. In: 9th IEEE Smart World Congress, 2023 August 28-31; Portsmouth, United Kingdom. 2023.
Mhmud 2023 {published data only}
    1. Mhmud H, Thee EF, Liefers B, Brussee C, Hamimida A, Van Zeijl I, et al. Automated deep learning-based disease feature quantification on color fundus photographs for prediction of late-stage age-related macular degeneration. Investigative Ophthalmology & Visual Science 64;8:218.
Michl 2023 {published data only}
    1. Michl M, Neschi M, Kaider A, Hatz K, Deak G, Gerendas BS, et al. A systematic evaluation of human expert agreement on optical coherence tomography biomarkers using multiple devices. Eye (London, England) 2023;37(12):2573-9. - PMC - PubMed
Mishra 2022 {published data only}
    1. Mishra SS, Mandal B, Puhan NB. Perturbed composite attention model for macular optical coherence tomography image classification. IEEE Transactions on Artificial Intelligence 2022;3(4):625-35.
Mittal 2021 {published data only}
    1. Praveen M, Charul B. AMD-network: automatic macular diagnoses of disease in OCT scan images through neural network. In: ACT 2021 Workshop on Advances in Computation Al Intelligence; 2021 February 25-27; Dehli (India). Vol. 2823. New Delhi, India: CEUR-WS, 2021:67-71.
Mittal 2022 {published data only}
    1. Mittal P. AMD-Net: automatic medical diagnoses using retinal OCT images. In: Sanyal G, Travieso-González CM, Awasthi S, Pinto CM, Purushothama BR , editors(s). International Conference on Artificial Intelligence and Sustainable Engineering. Lecture Notes in Electrical Engineering. Vol. 836. Goa, India: Springer Science and Business Media Deutschland GmbH, 2022:101-8.
Moradi 2022 {published data only}
    1. Moradi M, Huan T, Chen Y, Du X, Seddon J. Ensemble learning for AMD prediction using retina OCT scans. Investigative Ophthalmology & Visual Science 2022;63(7):732-F0460.
Morano 2022 {published data only}
    1. Morano J, Hervella AS, Rouco J, Novo J, Fernandez-Vigo JI, Ortega M. Weakly-supervised detection of AMD-related lesions in color fundus images using explainable deep learning. arxiv.org/abs/2212.00565 (first received 1 Dec 2022). - PubMed
Morano 2023 {published data only}
    1. Morano J, Hervella AS, Rouco J, Novo J, Fernandez-Vigo JI, Ortega M. Weakly-supervised detection of AMD-related lesions in color fundus images using explainable deep learning. Computer Methods and Programs in Biomedicine 2023;229:107296. - PubMed
Mukherjee 2022 {published data only}
    1. Mukherjee S, De Silva T, Jayakar G, Grisso P, Wiley H, Keenan T, et al. Retinal layer segmentation for age-related macular degeneration patients with 3D-UNet. In: Medical Imaging 2022: Computer-Aided Diagnosis. Vol. 12033. Virtual, Online: Siemens Healthineers; The Society of Photo-Optical Instrumentation Engineers (SPIE), 2022.
MuniNagamani 2024 {published data only}
    1. Muni Nagamani G, Rayachoti E. Deep learning network (DL-Net) based classification and segmentation of multi-class retinal diseases using OCT scans. Biomedical Signal Processing and Control 2024;88:105619.
Nagaraj 2023 {published data only}
    1. Nagaraj P, Muneeswaran V, Sunethra B, Sreeya C, Dhannushree U, Nithisaa S. A comparative analysis of retinal disease image classification for oct using deep learning techniques. In: 2023 International Conference on Computer Communication and Informatics, 2023 January 23-25; Coimbatore, India. 2023.
Naick 2022 {published data only}
    1. Naick MR, Rasheed MA, Jayakumar V, Balaji JJ, Lakshminarayanan V. Quantum machine learning prediction model for retinal conditions: performance analysis. In: Applications of Machine Learning 2022, 2022 August 23-24; San Diego, USA. 2022:12227.
Naik 2023 {published data only}
    1. Naik G, Narvekar N, Agarwal D, Nandanwar N, Pande H. Eye disease prediction using ensemble learning and attention on OCT scans. arxiv.org/abs/2311.15301v1 (first received 26 Nov 2023).
Natarajan 2023 {published data only}
    1. Natarajan H, Ji JY, Sridharan A, Lin CH, Lu CK, Wang JK, et al. Implementation of extreme learning machine algorithm for age-related macular degeneration detection on OCT volumes. In: 2023 International Conference on Consumer Electronics - Taiwan, 2023 July 17-19; Pingtung, Taiwan. 2023:635-6.
NCT05675540 {published data only}
    1. NCT05675540. Artificial intelligence diagnostic aid (AID). classic.clinicaltrials.gov/ct2/show/NCT05675540 (first received 29 December 2022).
Neila 2019 {published data only}
    1. Neila PM, Kurmann TK, Yu S, Munk MR, Wolf S, Sznitman R. Automatic detection of retinal fluid in OCT volumes. Investigative Ophthalmology & Visual Science 2019;60(9):1518.
Nejad 2022 {published data only}
    1. Nejad RB, Khoramdel J, Ghanbarzadeh A, Sharbatdar M, Najafi E. A multiclass retinal diseases classification algorithm using deep learning methods. In: 10th RSI International Conference on Robotics and Mechatronics, 2022 November 15-18; Tehran, Iran. 2022:365-70.
Neroev 2023 {published data only}
    1. Neroev VV, Bragin AA, Zaytseva OV. Diagnostics of retinal pathologies by optical coherence tomography images using artificial intelligence tools. Rossiiskii Oftal'mologicheskii Zhurnal 2023;16(3):47-53.
Ng 2023 {published data only}
    1. Ng WY, Xu Y, Xu X, Ting DS. Cascaded defending and detecting of adversarial attacks against deep learning system in ophthalmic imaging. Investigative Ophthalmology & Visual Science 2023;64(8):215.
Oakley 2021 {published data only}
    1. Oakley JD, Grosso D, Borghesan F, Barresi C, Bandello F, Querques G. Deep-learning based automated quantification of critical OCT features in neovascular age-related macular degeneration. euretina.org/resource/abstract_2021_deep-learning-based-automated-quanti.... - PMC - PubMed
Ogundokun 2023 {published data only}
    1. Ogundokun RO, Abdulahi AR, Adenike AR, Babatunde AN, Babatunde RS. Inception V3 based approach for the recognition of age-related macular degeneration disease. In: 2023 International Conference on Science, Engineering and Business for Sustainable Development Goals, 2023 April 5-7; Omu-Aran, Nigeria. 2023.
Opoku 2023a {published data only}
    1. Opoku M, Weyori BA, Adekoya AF, Adu K. CLAHE-CapsNet: efficient retina optical coherence tomography classification using capsule networks with contrast limited adaptive histogram equalization. PloS One 2023;18(11):e0288663. - PMC - PubMed
Opoku 2023b {published data only}
    1. Opoku M, Weyori BA, Adekoya AF, Adu K. SFFT-CapsNet: stacked fast fourier transform for retina optical coherence tomography image classification using capsule network. International Journal of Advanced Computer Science and Applications 2023;14(9):294-306.
Ortiz 2023 {published data only}
    1. Ortiz S, Goenaga J, Miguel A. Deep learning-based ocular disease classification in fundus images. In: 1st IEEE Colombian Caribbean Conference, 2023 November 22-25; Barranquilla, Colombia. 2023.
Pan 2023 {published data only}
    1. Pan Y, Liu J, Cai Y, Yang X, Zhang Z, Long H, et al. Fundus image classification using Inception V3 and ResNet-50 for the early diagnostics of fundus diseases. Frontiers in Physiology 2023;14:1126780. - PMC - PubMed
Parthasarathy 2022 {published data only}
    1. Parthasarathy DR, Toh JK, Savoy F. Performance of an automated, deep learning-based tool to screen for age-related macular degeneration (AMD). Investigative Ophthalmology & Visual Science 2022;63(7):3021-F0291.
Parthasarathy 2023 {published data only}
    1. Parthasarathy DR, Baskaran P, Savoy FM, Maitray A, Negiloni K, Rajendran A, et al. Performance evaluation of an automated, offline artificial intelligence system integrated on a smartphone fundus camera for age-related macular degeneration (AMD) screening: an interim analysis. Investigative Ophthalmology & Visual Science 64;8:2153.
Pawloff 2023 {published data only}
    1. Pawloff M, Gerendas BS, Deak G, Bogunovic H, Gruber A, Schmidt-Erfurth U. Performance of retinal fluid monitoring in OCT imaging by automated deep learning versus human expert grading in neovascular AMD. Eye (London, England) 2023;37(18):3793-800. - PMC - PubMed
Pedersen 2023 {published data only}
    1. Pedersen KE, Wu AK, Maatouk C, Singh RP. Long-term outcomes in eyes with early residual fluid in neovascular age-related macular degeneration. Investigative Ophthalmology & Visual Science 2023;64(8):2197.
Peng 2019 {published data only}
    1. Peng Y, Dharssi S, Chen Q, Keenan TD, Agron E, Wong WT, et al. Deepseenet: a deep learning model for automated classification of patient-based age-related macular degeneration severity from color fundus photographs. Ophthalmology 2019;126(4):565-75. - PMC - PubMed
    1. Peng Y, Dharssi S, Chen Q, Keenan TD, Agrón E, Wong WT, et al. DeepSeeNet: a deep learning model for automated classification of patient-based age-related macular degeneration severity from color fundus photographs. arxiv.org/abs/1811.07492 2018. [DOI: 10.48550/arXiv.1811.07492] - DOI - PMC - PubMed
Phan 2016 {published data only}
    1. Phan TV, Seoud L, Chakor H, Cheriet F. Automatic screening and grading of age-related macular degeneration from texture analysis of fundus images. Journal of Ophthalmology 2016;2016:5893601. - PMC - PubMed
Philippi 2023 {published data only}
    1. Philippi D, Rothaus K, Castelli M. A vision transformer architecture for the automated segmentation of retinal lesions in spectral domain optical coherence tomography images. Scientific Reports 2023;13(1):517. - PMC - PubMed
Prasad 2018 {published data only}
    1. Prasad DK, Vibha L, Venugopal KR. Machine learning based early detection of age-related macular degeneration: early warning system. In: Fourteenth International Conference on Information Processing (ICINPRO); 2018 Dec 21-23; Bangalore (India). Bengaluru, India: Institute of Electrical and Electronics Engineers Inc., 2018.
Qaddour 2023 {published data only}
    1. Qaddour M, Touimi YB, Minaoui K. Classification of retinal fundus images using convolution neural network (CNN). In: 1st IEEE International Conference on Advances in Data-Driven Analytics and Intelligent Systems, 2023 November 23-25; Marrakech, Morocco. 2023.
Raen 2022 {published data only}
    1. Raen R, Islam Muhammad M, Islam R. Diagnosis of retinal diseases by classifying lesions in retinal layers using a modified ResNet architecture. In: 2022 International Conference on Advancement in Electrical and Electronic Engineering, 2022 February 24-26; Gazipur, Bangladesh. 2022.
Rajan 2023 {published data only}
    1. Rajan R, Kumar SN. OCT DEEPNET a deep learning approach for retinal OCT image classification. In: 3rd Congress on Intelligent Systems, 2022 September 5-6; Bengaluru, India. 2023:689-701.
Ramachandra 2015 {published data only}
    1. Ramachandra C, Bhat S, Bhaskaranand M, Nittala MG, Sadda SR, Solanki K. Advanced retinal image analysis for AMD screening applications. Investigative Ophthalmology & Visual Science 2015;56(7):3964.
Rapantzikos 2001 {published data only}
    1. Rapantzikos K, Zervakis M. Nonlinear enhancement and segmentation algorithm for the detection of age-related macular degeneration (AMD) in human eye's retina. In: International Conference on Image Processing (Cat. No.01CH37205); 2001 October 7-10;Thessaloniki (Greece). Vol. 3. Thessaloniki, Greece: Institute of Electrical and Electronics Engineers Computer Society, 2001:1055-8.
Riazi Esfahani 2023 {published data only}
    1. Riazi Esfahani P, Reddy AJ, Nawathey N, Ghauri MS, Min M, Wagh H, et al. Deep learning classification of drusen, choroidal neovascularization, and diabetic macular edema in optical coherence tomography (OCT) images. Cureus 2023;15(7):e41615. - PMC - PubMed
Ricardi 2024 {published data only}
    1. Ricardi F, Oakley J, Russakoff D, Boscia G, Caselgrandi P, Gelormini F, et al. Validation of a deep learning model for automatic detection and quantification of five OCT critical retinal features associated with neovascular age-related macular degeneration. British Journal of Ophthalmology 2024;14:14. - PubMed
Rudas 2023 {published data only}
    1. Rudas A, Chiang JN, Corradetti G, Rakocz N, Avram O, Halperin E, et al. Automated large-scale prediction of exudative AMD progression using machine-read OCT biomarkers. PLOS Digital Health 2;2:e0000106. - PMC - PubMed
Russell‐Puleri 2023 {published data only}
    1. Russell-Puleri S, Gale SL, Kaliukhovich DA, Blair J, Lasagni R, De Zanet S, et al. Comparison of a deep Learning based OCT image segmentation algorithm to manual segmentation by a traditional reading center for patients with wet AMD. Investigative Ophthalmology & Visual Science 2023;64(8):316.
Saleh 2022 {published data only}
    1. Saleh N, Abdel Wahed M, Salaheldin AM. Transfer learning-based platform for detecting multi-classification retinal disorders using optical coherence tomography images. International Journal of Imaging Systems and Technology 2022;32(3):740-52.
Sasmannshausen 2023 {published data only}
    1. Sasmannshausen M, Behning C, Weinz J, Goerdt L, Terheyden JH, Chang P, et al. Characteristics and spatial distribution of structural features in age-related macular degeneration: a MACUSTAR study report. Ophthalmology Retina 2023;7(5):420-30. - PubMed
Sathyan 2023 {published data only}
    1. Sathyan S, Chanchal M, Raghul S, Jeyakumar G. Advancing optical tomography image analysis: exploring convolutional neural network model variants for retinal damage detection. In: 10th IEEE Uttar Pradesh Section International Conference on Electrical, Electronics and Computer Engineering, 2023 December 1-3; Uttar Pradesh, India. 2023:869-75.
Schranz 2023 {published data only}
    1. Schranz M, Gerendas BS, Bogunovic H, Reiter GS, Schmidt-Erfurth U, Deak G. Correlation between retinal fluid volumes and macular neovascularization parameters in neovascular AMD. Investigative Ophthalmology & Visual Science 2023;64(8):4425.
Seebock 2019 {published data only}
    1. Seebock P, Waldstein SM, Klimscha S, Bogunovic H, Schlegl T, Gerendas BS, et al. Unsupervised identification of disease marker candidates in retinal OCT imaging data. IEEE Transactions on Medical Imaging 2019;38(4):1037-47. - PubMed
    1. Seebock P, Waldstein SM, Klimscha S, Bogunovic H, Schlegl T, Gerendas BS, et al. Unsupervised identification of disease marker candidates in retinal OCT imaging data. ieeexplore.ieee.org/document/8502086 2018. [DOI: 10.1109/TMI.2018.2877080] - DOI - PubMed
Shen 2023a {published data only}
    1. Shen Y, Li J, Zhu W, Yu K, Wang M, Peng Y, et al. Graph attention U-Net for retinal layer surface detection and choroid neovascularization segmentation in OCT images. IEEE Transactions on Medical Imaging 2023;42(11):3140-54. - PubMed
Shen 2023b {published data only}
    1. Shen J, Hu Y, Zhang X, Gong Y, Kawasaki R, Liu J. Structure-oriented transformer for retinal diseases grading from OCT images. Computers in Biology and Medicine 2023;152:106445. - PubMed
Shukla 2022 {published data only}
    1. Shukla R, Kaur H. Optical coherence tomography classification through deep learning. In: 2022 IEEE Global Conference on Computing, Power and Communication Technologies, 2022 September 23-25; New Delhi, India. 2022.
Skevas 2022 {published data only}
    1. Skevas C, Weindler H, Levering M, Engelberts J, Van Grinsven M, Katz T. Simultaneous screening and classification of diabetic retinopathy and age-related macular degeneration based on fundus photos-a prospective analysis of the RetCAD system. International Journal of Ophthalmology 2022;15(12):1985-93. - PMC - PubMed
Sotoudeh‐Paima 2022 {published data only}
    1. Sotoudeh-Paima S, Jodeiri A, Hajizadeh F, Soltanian-Zadeh H. Multi-scale convolutional neural network for automated AMD classification using retinal OCT images. Computers in Biology and Medicine 2022;144:105368. - PubMed
    1. Sotoudeh-Paima S, Jodeiri A, Hajizadeh F, Soltanian-Zadeh H. Multi-scale convolutional neural network for automated AMD classification using retinal OCT images. arxiv.org/abs/2110.03002 2021. [DOI: 10.48550/arXiv.2110.03002] - DOI - PubMed
Sun 2023 {published data only}
    1. Sun G, Wang X, Xu L, Li C, Wang W, Yi Z, et al. Deep learning for the detection of multiple fundus diseases using ultra-widefield images. Ophthalmology and Therapy 2023;12(2):895-907. - PMC - PubMed
Tanachotnarangkun 2022 {published data only}
    1. Tanachotnarangkun P, Marukatat S, Kumazawa I, Chanvarasuth P, Ruamviboonsuk P, Amornpetchsathaporn A, et al. A framework for generating an ICGA from a fundus image using GAN. In: 19th International Conference on Electrical Engineering/Electronics, Computer, Telecommunications and Information Technology, 2022 May 24-27; Prachuap Khiri Khan, Thailand. 2022.
Tang 2024 {published data only}
    1. Tang QQ, Yang XG, Wang HQ, Wu DW, Zhang MX. Applications of deep learning for detecting ophthalmic diseases with ultrawide-field fundus images. International Journal of Ophthalmology 2024;17(1):188-200. - PMC - PubMed
Tayal 2022 {published data only}
    1. Tayal A, Gupta J, Solanki A, Bisht K, Nayyar A, Masud M. DL-CNN-based approach with image processing techniques for diagnosis of retinal diseases. Multimedia Systems 2022;28:1417-38.
Thakoor 2022a {published data only}
    1. Thakoor KA, Carter A, Song G, Wax A, Moussa O, Chen RW, et al. Enhancing portable OCT image quality via GANS for AI-based eye disease detection. In: 3rd MICCAI Workshop on Distributed, Collaborative, and Federated Learning, DeCaF 2022, and the 2nd MICCAI Workshop on Affordable AI and Healthcare, FAIR 2022, Held in Conjunction with the 25th International Conference on Medical Image Computing and Comput 2022; 2022 September 22; Singapore, Singapore. 2022:155-67.
Thee 2020 {published data only}
    1. Thee EF, Meester-Smoor MA, Luttikhuizen DT, Colijn JM, Enthoven CA, Haarman AE, et al. Performance of classification systems for age-related macular degeneration in the Rotterdam study. Translational Vision Science and Technology 2020;9(2):1-11. - PMC - PubMed
    1. Thee EF, Van Grinsven MJ, Verzijden T, Luttikhuizen DT, Meester M, Colijn JM, et al. Automated grading of fundus photographs to identify referable AMD for first-line eye care. Investigative Ophthalmology & Visual Science 2019;60(9):1532.
Trivizki 2023 {published data only}
    1. Trivizki O, Varcheie M, Bello S, Raden I, Iyer P, Marquez M, et al. Assessing change in exudative age-related macular degeneration with macular thickness maps as a surrogate strategy for remote patient monitoring. American Journal of Ophthalmology 2023;256:1-8. - PMC - PubMed
Udayaraju 2022 {published data only}
    1. Udayaraju P, Jeyanthi P. Early diagnosis of age-related macular degeneration (ARMD) using deep learning. In: Reddy VS, Prasad VK, Mallikarjuna Rao DN, Satapathy SC , editors(s). Intelligent Systems and Sustainable Computing. Smart Innovation, Systems and Technologies. Vol. 289. Hyderabad, India: Springer Science and Business Media Deutschland GmbH, 2022:657-63.
Udayaraju 2023 {published data only}
    1. Udayaraju P, Jeyanthi P, Sekhar BV. A hybrid multilayered classification model with VGG-19 net for retinal diseases using optical coherence tomography images. Soft Computing 2023;27(17):12559-70.
Vaghefi 2022 {published data only}
    1. Vaghefi E, Xie L, Yang S, Han D, Squirrell D. Automating the diagnosis of advanced age-related macular degeneration and high risk intermediate age-related macular degeneration, based on the Age-Related Eye Disease Study scoring system. Clinical & Experimental Ophthalmology 2022;49(8):833-4.
Vali 2023 {published data only}
    1. Vali M, Nazari B, Sadri S, Pour EK, Riazi-Esfahani H, Faghihi H, et al. CNV-Net: segmentation, classification and activity score measurement of choroidal neovascularization (CNV) using optical coherence tomography angiography (OCTA). Diagnostics 2023;13(7):31. - PMC - PubMed
Vannadil 2023 {published data only}
    1. Vannadil N, Kokil P. Noise and performance analysis on fundus images with CNN and transformer models. In: 7th IEEE Conference on Information and Communication Technology, 2023 December 15-17; Jabalpur, India. 2023.
Vidal 2023 {published data only}
    1. Vidal PL, Moura J, Almuina P, Fernandez MI, Ortega M, Novo J. Comprehensive fully-automatic multi-depth grading of the clinical types of macular neovascularization in OCTA images. Applied Intelligence 2023;53(21):25897-918.
von der Emde 2023 {published data only}
    1. Emde L, Mallwitz M, Vaisband M, Hasenauer J, Sasmannshausen M, Terheyden JH, et al. Retest variability and patient reliability indices of quantitative fundus autofluorescence in age-related macular degeneration: a MACUSTAR study report. Scientific Reports 2023;13(1):17417. - PMC - PubMed
Wang 2023a {published data only}
    1. Wang J, Hormel TT, Tsuboi K, Wang X, Ding X, Peng X, et al. Deep learning for diagnosing and segmenting choroidal neovascularization in oct angiography in a large real-world data set. Translational Vision Science & Technology 2023;12(4):15. - PMC - PubMed
Wang 2023b {published data only}
    1. Wang M, Lin T, Wang L, Lin A, Zou K, Xu X, et al. Uncertainty-inspired open set learning for retinal anomaly identification. Nature Communications 2023;14(1):6757. - PMC - PubMed
Wang 2023c {published data only}
    1. Wang M, Lin Z, Zhou J, Xing L, Zeng P. Applications of explainable artificial intelligent algorithms to age-related macular degeneration diagnosis: a case study based on CNN, attention, and CAM mechanism. In: 1st IEEE International Conference on Contemporary Computing and Communications, 2023 April 21 22; Bangalore, India. 2023.
Wang 2024a {published data only}
    1. Wang JD, Liu MR, Liu ML, Zhang R, Chen CX, Cao K. An auxiliary diagnostic tool for common fundus diseases based on fundus color photography and light-weight classification models. Graefe's Archive for Clinical and Experimental Ophthalmology 262;1:223-9. - PubMed
Wang 2024b {published data only}
    1. Wang MH, Zhou J, Huang C, Tang Z, Yu X, Hou G, et al. Fusion learning methods for the age-related macular degeneration diagnosis based on multiple sources of ophthalmic digital images. In: 2nd International Conference on Electrical, Electronics, and Information Engineering, 2023 November 2-4; Wuhan, China. 2024:12983.
Wang L 2020 {published data only}
    1. Wang L, Wang G, Zhang M, Fan D, Liu X, Guo Y, et al. An intelligent optical coherence tomography-based systemfor pathological retinal cases identification and urgent referrals. Translational Vision Science and Technology 2020;9(2):1-11. - PMC - PubMed
Wei 2023a {published data only}
    1. Wei W, Southern J, Zhu K, Li Y, Cordeiro MF, Veselkov K. Deep learning to detect macular atrophy in wet age-related macular degeneration using optical coherence tomography. Scientific Reports 2023;13(1):8296. - PMC - PubMed
Wei 2023b {published data only}
    1. Wei W, Anantharanjit R, Patel RP, Cordeiro MF. Detection of macular atrophy in age-related macular degeneration aided by artificial intelligence. Expert Review of Molecular Diagnostics 2023;23(6):485-94. - PubMed
Whitney 2023 {published data only}
    1. Whitney J, Cetin H, Yordi S, Kalra G, Bonnay M, Borisiak K, et al. Multi-model integration for enhancing deep learning retinal layer segmentation performance in age-related macular degeneration with geographic atrophy on optical coherence tomography. Investigative Ophthalmology & Visual Science 2023;64(8):1127.
Williamson 2024 {published data only}
    1. Williamson DJ, Struyven RR, Antaki F, Chia MA, Wagner SK, Jhingan M, et al. Artificial intelligence to facilitate clinical trial recruitment in age-related macular degeneration. medRxiv 2024 [Preprint]. [DOI: ] - PMC - PubMed
Wilson 2021 {published data only}
    1. Wilson M, Chopra R, Wilson MZ, Cooper C, MacWilliams P, Liu Y, et al. Validation and clinical applicability of whole-volume automated segmentation of optical coherence tomography in retinal disease using deep learning. JAMA Ophthalmology 2021;139(9):964-73. - PMC - PubMed
Xia 2022 {published data only}
    1. Xia X, Zhan K, Li Y, Xiao G, Yan J, Huang Z, et al. Eye disease diagnosis and fundus synthesis: a large-scale dataset and benchmark. In: 24th IEEE International Workshop on Multimedia Signal Processing, 2022 September 26-28; Shanghai, China. 2022.
Xu 2021 {published data only}
    1. Xu Z, Wang W, Yang J, Zhao J, Ding D, He F, et al. Automated diagnoses of age-related macular degeneration and polypoidal choroidal vasculopathy using bi-modal deep convolutional neural networks. British Journal Ophthalmology 2021;105(4):561-6. - PubMed
Yan 2021 {published data only}
    1. Yan Y, Jin K, Gao Z, Huang X, Wang F, Wang Y, et al. Attention-based deep learning system for automated diagnoses of age-related macular degeneration in optical coherence tomography images. Medical Physics 2021;48(9):4926-34. - PubMed
Yang J 2021 {published data only}
    1. Yang J, Yang Z, Mao Z, Zhao J, Wang Y, Zhang B, et al. Bi-modal deep learning for recognizing multiple retinal diseases based on color fundus photos and OCT images. Investigative Ophthalmology & Visual Science 2021;62(8):2107.
Yang XL 2022 {published data only}
    1. Yang XL, Yi SL. Multi-classification of fundus diseases based on DSRA-CNN. Biomedical Signal Processing and Control 2022;77:103763.
Yellapragada 2022 {published data only}
    1. Yellapragada B, Hornauer S, Snyder K, Yu S, Yiu G. Self-supervised feature learning and phenotyping for assessing age-related macular degeneration using retinal fundus images. Ophthalmology Retina 2022;6(2):116‐29. - PMC - PubMed
    1. Yellapragada B, Hornhauer S, Snyder K, Yu S, Yiu G. Unsupervised deep learning for grading age-related macular degeneration using retinal fundus images. arxiv.org/abs/2010.11993 2020. [DOI: 10.48550/arXiv.2010.11993] - DOI
    1. Yiu G, Yellapragada B, Hornauer S, Snyder K, Yu S. Unsupervised deep learning for grading age related macular degeneration using retinal fundus images. Investigative Ophthalmology & Visual Science 2021;62(8):119.
Yildirim 2023 {published data only}
    1. Yildirim K, Al-Nawaiseh S, Ehlers S, Schieser L, Storck M, Brix T, et al. U-Net-based segmentation of current imaging biomarkers in OCT-scans of patients with age related macular degeneration. Studies in Health Technology and Informatics 2023;302:947-51. - PubMed
Zhou 2022 {published data only}
    1. Zhou S, Yu D, Cai Y, Zhang Y, Li B, Li W. TCAM-Resnet: a convolutional neural network for screening DR and AMD based on OCT images. In: 2022 IEEE International Conference on Bioinformatics and Biomedicine, 2022 December 6-8; Las Vegas, United States. 2022:1830-5.
Zhou 2023a {published data only}
    1. Zhou Z, Niu C, Yu H, Zhao J, Wang Y, Dai C. Diagnosis of retinal diseases using the vision transformer model based on optical coherence tomography images. In: SPIE-CLP Conference on Advanced Photonics 2022, 2022 November 21-23; Virtual, Online. 2023:12601.
Zhou 2023b {published data only}
    1. Zhou Y, Chia MA, Wagner SK, Ayhan MS, Williamson DJ, Struyven RR, et al. A foundation model for generalizable disease detection from retinal images. Nature 2023;622(7981):156-63. - PMC - PubMed
Zhu 2022 {published data only}
    1. Zhu S, Lu B, Wang C, Wu M, Zheng B, Jiang Q, et al. Screening of common retinal diseases using six-category models based on EfficientNet. Frontiers in Medicine 2022 Feb 23 [Epub ahead of print]. [DOI: 10.3389/fmed.2022.808402] - DOI - PMC - PubMed
Zhu 2023 {published data only}
    1. Zhu A, Tailor P, Verma R, Zhang I, Schott B, Ye C, et al. Implementation of deep learning artificial intelligence in vision-threatening disease screenings for an underserved community during COVID-19. Journal of Telemedicine and Telecare 2023 March 13 [Epub ahead of print]:1357633X231158832. [DOI: 10.1177/1357633X231158832] - DOI - PMC - PubMed
Zimmer‐Galler 2005 {published data only}
    1. Zimmer-Galler IE, Zeimer R. Feasibility of screening for high-risk age-related macular degeneration with an Internet-based automated fundus camera. Ophthalmic Surgery, Lasers and Imaging Retina 2005;36(3):228-36. - PubMed

References to studies awaiting assessment

Abd 2024 {published data only}
    1. Abd El-Khalek AA, Balaha HM, Alghamdi NS, Ghazal M, Khalil AT, Abo-Elsoud ME, et al. A concentrated machine learning-based classification system for age-related macular degeneration (AMD) diagnosis using fundus images. Scientific Reports 2024;14(1):2434. [DOI: 10.1038/s41598-024-52131-2] - DOI - PMC - PubMed
Alphy 2023 {published data only}
    1. Alphy A, Rajamohamed, Velusamy J, Vidhya K, Ravi G, Rajasekaran AS. Detection and diagnosis of age-related macular degeneration using recurrent neural network with cloud architecture and internet of things. Journal of Intelligent and Fuzzy Systems 2023;45(6):11093-105. [DOI: 10.3233/JIFS-233044] - DOI
Araújo 2023 {published data only}
    1. Araújo T, Aresta G, Schmidt-Erfurth U, Bogunovic H. Improving the robustness of deep learning systems for automated AMD screening in retinal OCT. Investigative Ophthalmology & Visual Science 2023;64(8):1079.
Ayhan 2023 {published data only}
    1. Ayhan MS, Faber H, Kuhlewein L, Inhoffen W, Aliyeva G, Ziemssen F, et al. Multitask learning for activity detection in neovascular age-related macular degeneration. Translational Vision Science & Technology 2023;12(4):12. [DOI: 10.1167/tvst.12.4.12] - DOI - PMC - PubMed
Boukadida 2022 {published data only}
    1. Boukadida R, Elloumi Y, Kachouri R, Abdallah AB, Bedoui MH. Automated diagnosis of retinal neovascularization pathologies from color retinal fundus images. In: 39th Computer Graphics International Conference on Advances in Computer Graphics; September 12-16; Online. Vol. 13443 LNCS. Springer Science and Business Media Deutschland GmbH, 2022:451-62. [DOI: 10.1007/978-3-031-23473-6_35] - DOI
Brasil 2022 {published data only}
    1. Brasil BS, De Alexandria AR, De Freitas GG. Artificial Intelligence applied to the classification of retinal diseases in optical coherence tomography images. In: 5th International Conference on Vocational Education and Electrical Engineering; September 10-11; Virtual, Surabaya, Indonesia. Institute of Electrical and Electronics Engineers Inc, 2022:78-83. [DOI: 10.1109/ICVEE57061.2022.9930121] - DOI
Corradetti 2024 {published data only}
    1. Corradetti G, Rakocz N, Chiang JN, Avram O, Alagorie AR, Nittala MG, et al. Prediction of activity in eyes with macular neovascularization due to age-related macular degeneration using deep learning. Eye (London, England) 2024;38(5):819-21. [DOI: 10.1038/s41433-023-02805-4] - DOI - PMC - PubMed
De Fauw 2017 {published data only}
    1. De Fauw J, Keane P, Tomasev N, Visentin D, den Driessche G, Johnson M, et al. Automated analysis of retinal imaging using machine learning techniques for computer vision. F1000Research 2016;5:1573. [DOI: 10.12688/f1000research.8996.1] - DOI - PMC - PubMed
    1. De Fauw J, Keane P, Tomasev N, Visentin D, den Driessche G, et al. Automated analysis of retinal imaging using machine learning techniques for computer vision [version 2; peer review: 2 approved]. F1000Research 2017;5:1573. [DOI: 10.12688/f1000research.8996.2] - DOI - PMC - PubMed
    1. Yim J, Chopra R, Spitz T, Winkens J, Obika A, Kelly C, et al. Predicting conversion to wet age-related macular degeneration using deep learning. Nature Medicine 2020;26(6):892-9. - PubMed
Diao 2023 {published data only}
    1. Diao S, Su J, Yang C, Zhu W, Xiang D, Chen X, et al. Classification and segmentation of OCT images for age-related macular degeneration based on dual guidance networks. Biomedical Signal Processing and Control 2023;84:104810. [DOI: 10.1016/j.bspc.2023.104810] - DOI
Dominguez 2023 {published data only}
    1. Dominguez C, Heras J, Mata E, Pascual V, Royo D, Zapata MA. Binary and multi-class automated detection of age-related macular degeneration using convolutional- and transformer-based architectures. Computer Methods and Programs in Biomedicine 2023;229:107302. [DOI: 10.1016/j.cmpb.2022.107302] - DOI - PubMed
Dutta 2023 {published data only}
    1. Dutta P, Sathi KA, Hossain MA, Dewan MA. Conv-vit: a convolution and vision transformer-based hybrid feature extraction method for retinal disease detection. Journal of Imaging 2023;9(7):140. [DOI: 10.3390/jimaging9070140] - DOI - PMC - PubMed
E 2022 {published data only}
    1. E H, Ding J, Yuan L. SAE-wAMD: a self-attention enhanced convolution neural network for fine-grained classification of wet age-related macular degeneration using OCT images. In: 2022 International Conference on Image Processing, Computer Vision and Machine Learning; 2022 October 28-30; Online, China. Institute of Electrical and Electronics Engineers Inc., 2022:619-27. [DOI: 10.1109/ICICML57342.2022.10009714] - DOI
E 2023 {published data only}
    1. E H, He J, Hu T, Yuan L, Zhang R, Zhang S, et al. KFWC: a knowledge-driven deep learning model for fine-grained classification of wet-AMD. Computer Methods in Programs in Biomedicine 2023;229:107312. [DOI: 10.1016/j.cmpb.2022.107312] - DOI - PubMed
Elsharkawy 2024 {published data only}
    1. Elsharkawy M, Sharafeldeen A, Khalifa F, Soliman A, Elnakib A, Ghazal M, et al. A clinically explainable AI-based grading system for age-related macular degeneration using optical coherence tomography. IEEE Journal of Biomedical and Health Informatics 2024;28(4):2079-90. [DOI: 10.1109/JBHI.2024.3355329] - DOI - PubMed
Han 2023b {published data only}
    1. Han J, Choi S, Park JI, Hwang JS, Han JM, Ko J, et al. Detecting macular disease based on optical coherence tomography using a deep convolutional network. Journal of Clinical Medicine 2023;12(3):1005. [DOI: 10.3390/jcm12031005] - DOI - PMC - PubMed
Heinke 2024 {published data only}
    1. Heinke A, Zhang H, Deussen D, Galang CM, Warter A, Kalaw FG, et al. Artificial Intelligence for optical coherence tomography angiography-based disease activity prediction in age-related macular degeneration. Retina (Philadelphia, Pa.) 2024;44(3):465-74. [DOI: 10.1097/IAE.0000000000003977] - DOI - PMC - PubMed
    1. Heinke A, Zhang H, Galang C, Deussen D, Warter A, Kalaw FG, et al. Artificial intelligence for OCTA- based disease activity prediction in age related macular degeneration. Investigative Ophthalmology & Visual Science 2023;64(8):3385.
Ibragimova 2022 {published data only}
    1. Ibragimova RR, Gilmanov II, Lopukhova EA, Lakman IA, Bilyalov AR, Mukhamadeev TR, et al. Algorithm of segmentation of oct macular images to analyze the results in patients with age-related macular degeneration. Bulletin of Russian State Medical University 2022;2022(6):85-91. [DOI: 10.24075/BRSMU.2022.062] - DOI
Kaothanthong 2023 {published data only}
    1. Kaothanthong N, Limwattanayingyong J, Silpa-Archa S, Tadarati M, Amphornphruet A, Singhanetr P, et al. The classification of common macular diseases using deep learning on optical coherence tomography images with and without prior automated segmentation. Diagnostics (Basel, Switzerland) 2023;13(2):189. [DOI: 10.3390/diagnostics13020189] - DOI - PMC - PubMed
Khose 2023 {published data only}
    1. Khose S, Ghosh A, Kamath YS, Kuzhuppilly NI, Kumar JR. Explainable classification of macular degeneration using deep learning. In: 20th IEEE India Council International Conference; 2023 December 14-17; Hyderabad, India. Institute of Electrical and Electronics Engineers Inc., 2023:603-8. [DOI: 10.1109/INDICON59947.2023.10440906] - DOI
Le 2023 {published data only}
    1. Le NT, Le TT, Pongsachareonnont PF, Suwajanakorn D, Mavichak A, Itthipanichpong R, et al. Deep learning approach for age-related macular degeneration detection using retinal images: efficacy evaluation of different deep learning models. Egyptian Informatics Journal 2023;24(4):100402. [DOI: 10.1016/j.eij.2023.100402] - DOI
Lopukhova 2023 {published data only}
    1. Lopukhova EA, Ibragimova RR, Gruzdev VG, Gilmanov II, Kutluyarov RV, Mukhamadeev TR. Comparison of deep learning approaches for OCT diagnostics of age-related macular degeneration. In: Optical Technologies for Telecommunications 2022; 2022 November 23-26. Vol. 12743. Ufa, Russia: SPIE, 2023. [DOI: 10.1117/12.2680764] - DOI
Mathieu 2024 {published data only}
    1. Mathieu A, Ajana S, Korobelnik JF, Le Goff M, Gontier B, Rougier MB, et al. DeepAlienorNet: a deep learning model to extract clinical features from colour fundus photography in age-related macular degeneration. Acta Ophthalmologica 2024;12:12. [DOI: 10.1111/aos.16660] - DOI - PubMed
Prabha 2024 {published data only}
    1. Prabha AJ, Venkatesan C, Fathimal MS, Nithiyanantham KK, Kirubha SP. RD-OCT net: hybrid learning system for automated diagnosis of macular diseases from OCT retinal images. Biomedical Physics & Engineering Express 2024;10(2):025033. [DOI: 10.1088/2057-1976/ad27ea] - DOI - PubMed
Shwartz 2023 {published data only}
    1. Shwartz Y, Gur A, Lender VR, Cnaany Y, Kellerman R, Levi J, et al. Age-related macular degeneration (AMD) staging from routine clinical OCT scans using deep learning (DL). Investigative Ophthalmology & Visual Science 2023;64(8):333.
Talcott 2024 {published data only}
    1. Talcott KE, Valentim CC, Perkins SW, Ren H, Manivannan N, Zhang Q, et al. Automated detection of abnormal optical coherence tomography b-scans using a deep learning artificial intelligence neural network platform. International Ophthalmology Clinics 2024;64(1):115-27. [DOI: 10.1097/IIO.0000000000000519] - DOI - PubMed
Wongchaisuwat 2023 {published data only}
    1. Wongchaisuwat N, Thamphithak R, Watunyuta P, Wongchaisuwat P. Automated classification of polypoidal choroidal vasculopathy and wet age-related macular degeneration by spectral domain optical coherence tomography using self-supervised learning. In: 14th International Conference on Ambient Systems, Networks and Technologies Networks, ANT 2023 and the 6th International Conference on Emerging Data and Industry 4.0, EDI40 2023; 2023 March 15-17; Leuven, Belgium. Vol. 220. Elsevier B.V., 2023:1003-8. [DOI: 10.1016/j.procs.2023.03.139] - DOI
Wu 2022 {published data only}
    1. Wu M, Lu Y, Hong X, Zhang J, Zheng B, Zhu S, et al. Classification of dry and wet macular degeneration based on the ConvNeXT model. Frontiers in Computational Neuroscience 2022;16:1-10. [DOI: 10.3389/fncom.2022.1079155] - DOI - PMC - PubMed
Xie 2023 {published data only}
    1. Xie L, Vaghefi E, Yang S, Han D, Marshall J, Squirrell D. Automation of macular degeneration classification in the areds dataset, using a novel neural network design. Clinical Ophthalmology (Auckland, N.Z.) 2023;17:455-69. [DOI: 10.2147/OPTH.S396537] - DOI - PMC - PubMed
Xu 2023 {published data only}
    1. Xu K, Huang S, Yang Z, Zhang Y, Fang Y, Zheng G, et al. Automatic detection and differential diagnosis of age-related macular degeneration from color fundus photographs using deep learning with hierarchical vision transformer. Computers in Biology and Medicine 2023;167:107616. [DOI: 10.1016/j.compbiomed.2023.107616] - DOI - PubMed
Zhang 2023 {published data only}
    1. Zhang H, Heinke A, Galang CM, Deussen DN, Wen B, Bartsch DU, et al. Robust AMD stage grading with exclusively OCTA modality leveraging 3D volume. In: 2023 IEEE/CVF International Conference on Computer Vision Workshops, ICCVW 2023; 2023 October 2-6; Paris, France. Institute of Electrical and Electronics Engineers Inc., 2023:2403-12. [DOI: 10.1109/ICCVW60793.2023.00255] - DOI - PMC - PubMed

Additional references

Al‐Zamil 2017
    1. Al-Zamil WM, Yassin SA. Recent developments in age-related macular degeneration: a review. Clinical Interventions in Aging 2017;12:1313-30. - PMC - PubMed
Altay 2021
    1. Altay L, Liakopoulos S, Berghold A, Rosenberger KD, Ernst A, Breuk A, et al. Genetic and environmental risk factors for reticular pseudodrusen in the EUGENDA study. Molecular Vision 2021;27:757-67. - PMC - PubMed
Andaur‐Navarro 2023
    1. Andaur Navarro CL, Damen JA, Takada T, Nijman SW, Dhiman P, Ma J, et al. Systematic review finds "spin" practices and poor reporting standards in studies on machine learning-based prediction models. Journal of Clinical Epidemiology 2023;158:99-110. - PubMed
AREDS 1999
    1. Age-Related Eye Disease Study Research Group. The Age-Related Eye Disease Study (AREDS): design implications. AREDS report no. 1. Controlled Clinical Trials 1999;20(6):573-600. - PMC - PubMed
AREDS 2001
    1. Age-Related Eye Disease Study Research Group (AREDS). A randomized, placebo-controlled, clinical trial of high-dose supplementation with vitamins C and E, beta carotene, and zinc for age-related macular degeneration and vision loss: AREDS report no. 8. Archives of Ophthalmology 2001;119(10):1417-36. - PMC - PubMed
Bendl 2016
    1. Bendl C, Breinlich V, Stark KJ, Enzinger S, Assenmachner M, Olden M, et al. Features of age-related macular degeneration in the general adults and their dependency on age, sex, and smoking: results from the German KORA Study. PloS One 2016;11(11):e0167181. - PMC - PubMed
Bhuiyan 2020
    1. Bhuiyan A, Wong TY, Ting DS, Govindaiah A, Souied EH, Smith RT. Artificial Intelligence to stratify severity of age-related macular degeneration (AMD) and predict risk of progression to late AMD. Translational Vision Science & Technology 2020;9(2):25. - PMC - PubMed
Bossuyt 2023
    1. Bossuyt PM. Chapter 3: Understanding the design of test accuracy studies. In: Deeks JJ, Bossuyt PM, Leeflang MM, Takwoingi Y, editor(s). Cochrane Handbook for Systematic Reviews of Diagnostic Test Accuracy. Version 2.0 (updated July 2023). Cochrane, 2023. Available from training.cochrane.org/handbook-diagnostic-test-accuracy/current.
Boutron 2023
    1. Boutron I, Page MJ, Higgins JP, Altman DG, Lundh A, Hróbjartsson A. Chapter 7: Considering bias and conflicts of interest among the included studies. In: Higgins JP, Thomas J, Chandler J, Cumpston M, Li T, Page MJ, Welch VA, editor(s). Cochrane Handbook for Systematic Reviews of Interventions Version 6.4 (updated August 2023). Cochrane, 2023. Available from www.training.cochrane.org/handbook.
Bressler 1991
    1. Bressler NM, Bressler SB, Alexander J, Javornik N, Fine SL, Murphy RP. Loculated fluid: a previously undescribed fluorescein angiographic finding in choroidal neovascularization associated with macular degeneration. Archives of Ophthalmology 1991;109(2):211-5. - PubMed
Chen 2021b
    1. Chen Q, Keenan TD, Allot A, Peng Y, Agron E, Domalpally A, et al. Multimodal, multitask, multiattention (M3) deep learning detection of reticular pseudodrusen: toward automated and accessible classification of age-related macular degeneration. Journal of the American Medical Informatics Association 2021;28(6):1135-48. - PMC - PubMed
Cheung 2022
    1. Cheung R, Chun J, Sheidow T, Motolko M, Malvankar-Mehta MS. Diagnostic accuracy of current machine learning classifiers for age-related macular degeneration: a systematic review and meta-analysis. Eye (London) 2022;36(5):994-1004. - PMC - PubMed
Chlap 2021
    1. Chlap, P, Min, H, Vandenberg, N, Dowling J, Holloway L, Haworth A. A review of medical image data augmentation techniques for deep learning applications. Journal of Medical Imaging and Radiation Oncology 2021;65(5):545-63. - PubMed
Covidence [Computer program]
    1. Covidence. Version accessed 28 March 2023. Melbourne, Australia: Veritas Health Innovation, 2023. Available at https://www.covidence.org.
Cunningham 2017
    1. Cunningham J. Recognizing age-related macular degeneration in primary care. Journal of the American Academy of PAs 2017;30(3):18-22. - PubMed
de Carlo 2015
    1. Carlo TE, Romano A, Waheed NK, Duker JS. A review of optical coherence tomography angiography (OCTA). International Journal of Retina and Vitreous 2015;1(1):1-5. - PMC - PubMed
Deeks 2023
    1. Deeks JJ, Bossuyt PM, Leeflang MM, Takwoingi Y. Chapter 11: Presenting findings. In: Deeks JJ, Bossuyt PM, Leeflang MM, Takwoingi Y (editors). Cochrane Handbook for Systematic Reviews of Diagnostic Test Accuracy. Version 2.0 (updated July 2023). Cochrane, 2023. Available from training.cochrane.org/handbook-diagnostic-testaccuracy/current.
Deng 2009
    1. Deng J, Dong W, Socher R, Li LJ, Li K, Li FF. ImageNet: a large-scale hierarchical image database. In: In: 2009 IEEE Conference on Computer Vision and Pattern Recognition, Miami, FL, USA. IEEE, 2009:248-55.
Dinnes 2023
    1. Dinnes J, Deeks JJ, Leeflang MM, Li T. Chapter 7: Collecting data. In: Deeks JJ, Bossuyt PM, Leeflang MM, Takwoingi Y, editor(s). Cochrane Handbook for Systematic Reviews of Diagnostic Test Accuracy. Version 2.0 (updated July 2023). Cochrane, 2023. Available from training.cochrane.org/handbook-diagnostic-testaccuracy/current.
Dong 2021
    1. Dong L, Yang Q, Zhang RH, Wei WB. Artificial intelligence for the detection of age-related macular degeneration in color fundus photographs: a systematic review and meta-analysis. EClinicalMedicine 2021;35:100875. [DOI: 10.1016/j.eclinm.2021.100875] - DOI - PMC - PubMed
Dugel 2020
    1. Dugel PU, Koh A, Ogura Y, Jaffe GJ, Schmidt-Erfurth U, Brown DM, et al. HAWK and HARRIER: phase 3, multicenter, randomized, double-masked trials of brolucizumab for neovascular age-related macular degeneration. Ophthalmology 2020;127(1):72-84. - PubMed
Ervin 2022
    1. Ervin AM, Solomon SD, Shoge RY. Access to eye care in the United States: evidence-informed decision-making is key to improving access for underserved populations. Ophthalmology 2022;129(10):1079-80. - PubMed
Ferrara 2021
    1. Ferrara D, Newton EM, Lee AY. Artificial intelligence-based predictions in neovascular age-related macular degeneration. Current Opinion in Ophthalmology 2021;32(5):389-96. - PMC - PubMed
Ferris 2013
    1. Ferris FL 3rd, Wilkinson CP, Bird A, Chakravarthy U, Chew E, Csaky K, et al. Clinical classification of age-related macular degeneration. Ophthalmology 2013;120(4):844-51. - PMC - PubMed
Fisher 2016
    1. Fisher DE, Klein BE, Wong TY, Rotter JI, Li X, Shrager S, et al. Incidence of age-related macular degeneration in a multi-ethnic United States population: the multi-ethnic study of atherosclerosis. Ophthalmology 2016;123(6):1297-308. - PMC - PubMed
Flaxel 2020
    1. Flaxel CJ, Adelman RA, Bailey ST, Fawzi A, Lim JI, Vemulakonda GA, et al. Age-related macular degeneration preferred practice pattern. Ophthalmology 2020;127(1):P1-65. - PubMed
García‐Layana 2017
    1. García-Layana A, Cabrera-López F, García-Arumí J, Arias-Barquet L, Ruiz-Moreno JM. Early and intermediate age-related macular degeneration: update and clinical review. Clinical Interventions in Aging 2017;12:1579-87. - PMC - PubMed
Gheorghe 2015
    1. Gheorghe A, Mahdi L, Musat O. Age-related macular degeneration. Romanian Journal of Ophthalmology 2015;59(2):74-7. - PMC - PubMed
Gillies 2016
    1. Gillies MC, Nguyen V, Daien V, Arnold JJ, Morlet N, Barthelmes D. Twelve-month outcomes of ranibizumab vs aflibercept for neovascular age-related macular degeneration: data from an observational study. Ophthalmology 2016;123(12):2545-53. - PubMed
Gomez Rossi 2022
    1. Gomez Rossi J, Rojas-Perilla N, Krois J, Schwendicke F. Cost-effectiveness of artificial intelligence as a decision-support system applied to the detection and grading of melanoma, dental caries, and diabetic retinopathy. JAMA Network Open 2022;5(3):e220269. - PMC - PubMed
Gour 2021
    1. Gour M, Khanna P. Multi-class multi-label ophthalmological disease detection using transfer learning based convolutional neural network. Biomedical Signal Processing and Control 2021;66:102329. [DOI: 10.1016/j.bspc.2020.102329] - DOI
Gunasekeran 2020
    1. Gunasekeran DV, Wong TY. Artificial intelligence in ophthalmology in 2020: a technology on the cusp for translation and implementation. Asia-Pacific Journal of Ophthalmology 2020;9(2):61-6. - PubMed
Ho 2020
    1. Ho SY, Phua K, Wong L, Bin Goh WW. Extensions of the external validation for checking learned model interpretability and generalizability. Patterns (New York, N.Y.) 2020;1(8):100129. - PMC - PubMed
Hoover 2000
    1. Hoover AD, Kouznetsova V, Goldbaum M. Locating blood vessels in retinal images by piecewise threshold probing of a matched filter response. IEEE Transactions on Medical Imaging 2000;19(3):203-10. - PubMed
Hwang 2019
    1. Hwang DK, Hsu CC, Chang KJ, Chao D, Sun CH, Jheng YC, et al. Artificial intelligence-based decision-making for age-related macular degeneration. Theranostics 2019;9(1):232-45. - PMC - PubMed
iChallenge–AMD
    1. iChallenge–AMD Dataset. Available from ai.baidu.com/broad/introduction (accessed 27 March 2023).
Jaffe 2016
    1. Jaffe GJ, Eliott D, Wells JA, Prenner JL, Papp A, Patel S. A phase 1 study of intravitreous E10030 in combination with ranibizumab in neovascular age-related macular degeneration. Ophthalmology 2016;123(1):78-85. - PubMed
Keane 2012
    1. Keane PA, Heussen FM, Ouyang Y, Mokwa N, Walsh AC, Tufail A, et al. Assessment of differential pharmacodynamic effects using optical coherence tomography in neovascular age-related macular degeneration. Investigative Ophthalmology & Visual Science 2012;53(3):1152-61. - PMC - PubMed
Kelly 2019
    1. Kelly CJ, Karthikesalingam A, Suleyman M, Corrado G, King D. Key challenges for delivering clinical impact with artificial intelligence. BMC Medicine 2019;17(1):195. - PMC - PubMed
Kermany 2018
    1. Kermany DS, Goldbaum M, Cai W, Valentim CC, Liang H, Baxter SL, et al. Identifying medical diagnoses and treatable diseases by image-based deep learning. Cell 2018;172(5):1122-1131.e9. - PubMed
Khanani 2021
    1. Khanani AM, Aziz AA, Weng CY, Lin WV, Vannavong J, Chhablani J, et al. Port delivery system: a novel drug delivery platform to treat retinal diseases. Expert Opinion on Drug Delivery 2021;18(11):1571-6. - PubMed
Klein 1992
    1. Klein R, Klein BE, Linton KL. Prevalence of age-related maculopathy: the Beaver Dam Eye Study. Ophthalmology 1992;99(6):933-43. - PubMed
Kwan 2019
    1. Kwan CC, Fawzi AA. Imaging and biomarkers in diabetic macular edema and diabetic retinopathy. Current Diabetes Reports 2019;19(10):95. - PubMed
Leeflang 2023
    1. Leeflang MM, Steingart KR, Scholten RJ, Davenport C. Chapter 12: Drawing conclusions. In: Deeks JJ, Bossuyt PM, Leeflang MM, Takwoingi Y, editor(s). Cochrane Handbook for Systematic Reviews of Diagnostic Test Accuracy. Version 2.0 (updated July 2023). Cochrane, 2023. Available from training.cochrane.org/handbook-diagnostic-test-accuracy/current.
Liu 2019
    1. Liu Y, Chen PC, Krause J, Peng L. How to read articles that use machine learning: users' guides to the medical literature. JAMA 2019;322(18):1806-16. - PubMed
Macaskill 2023
    1. Macaskill P, Takwoingi Y, Deeks JJ, Gatsonis C. Chapter 9: Understanding meta-analysis. In: Deeks JJ, Bossuyt PM, Leeflang MM, Takwoingi Y, editor(s). Cochrane Handbook for Systematic Reviews of Diagnostic Test Accuracy. Version 2.0 (updated July 2023). Cochrane, 2023. Available from training.cochrane.org/handbook-diagnostic-test-accuracy/current.
McMurry 2013
    1. McMurry AJ, Fitch B, Savova G, Kohane IS, Reis BY. Improved de-identification of physician notes through integrative modeling of both public and private medical text. BMC Medical Informatics and Decision Making 2013;13(1):1-1. - PMC - PubMed
Mehta 2015
    1. Mehta S. Age-related macular degeneration. Primary Care 2015;42(3):377-91. - PubMed
Midena 2022
    1. Midena E, Marchione G, Di Giorgio S, Rotondi G, Longhin E, Frizziero L, et al. Ultra-wide-field fundus photography compared to ophthalmoscopy in diagnosing and classifying major retinal diseases. Scientific Reports 2022;12(1):19287. - PMC - PubMed
Mitchell 2018
    1. Mitchell P, Liew G, Gopinath B, Wong TY. Age-related macular degeneration. Lancet 2018;392(10153):1147-59. - PubMed
Moraru 2020
    1. Moraru AD, Costin D, Moraru RL, Branisteanu DC. Artificial intelligence and deep learning in ophthalmology - present and future. Experimental and Therapeutic Medicine 2020;20(4):3469-73. - PMC - PubMed
Nicolò 2021
    1. Nicolò M, Ferro Desideri L, Vagge A, Traverso CE. Faricimab: an investigational agent targeting the Tie-2/angiopoietin pathway and VEGF-A for the treatment of retinal diseases. Expert Opinion on Investigational Drugs 2021;30(3):193-200. - PubMed
ODIR
    1. Peking University international competition on ocular disease intelligent recognition. https://odir2019.grand-challenge.org/ Accessed 22 April 2024.
Paranjape 2019
    1. Paranjape K, Schinkel M, Nannan Panday R, Car J, Nanayakkara P. Introducing artificial intelligence training in medical education. JMIR Medical Education 2019;5(2):e16048. - PMC - PubMed
Patel 2023
    1. Patel SS, Lally DR, Hsu J, Wykoff CC, Eichenbaum D, Heier JS, et al. Avacincaptad pegol for geographic atrophy secondary to age-related macular degeneration: 18-month findings from the GATHER1 trial. Eye (London, England) 24 March 2023 [Epub ahead of print]. [DOI: 10.1038/s41433-023-02497-w] - DOI - PMC - PubMed
Raghu 2019
    1. Raghu M, Zhang C, Kleinberg J, Bengio S. Transfusion: understanding transfer learning for medical imaging. Available from arxiv.org/abs/1902.07208 (last accessed 11 August 2023).
Ratnapriya 2013
    1. Ratnapriya R, Chew EY. Age-related macular degeneration-clinical review and genetics update. Clinical Genetics 2013;84(2):160-6. - PMC - PubMed
RevMan 2024 [Computer program]
    1. Review Manager (RevMan). Version 8.5.1. The Cochrane Collaboration, 2024. Available at https://revman.cochrane.org.
Riley 2023
    1. Riley RD, Collins GS. Stability of clinical prediction models developed using statistical or machine learning methods. Biomedical Journal 2023;July:e2200302. [DOI: 10.1002/bimj.202200302] - DOI - PMC - PubMed
Russakoff 2019
    1. Russakoff DB, Lamin A, Oakley JD, Dubis AM, Sivaprasad S. Deep learning for prediction of AMD progression: a pilot study. Investigative Ophthalmology & Visual Science 2019;60(2):712-22. - PubMed
Sajid 2022
    1. Sajid IM, Frost K, Paul AK. 'Diagnostic downshift': clinical and system consequences of extrapolating secondary care testing tactics to primary care. BMJ Evidence-Based Medicine 2022;27(3):141-8. - PubMed
Schmidt‐Erfurth 2017
    1. Schmidt-Erfurth U, Klimscha S, Waldstein SM, Bogunovic H. A view of the current and future role of optical coherence tomography in the management of age-related macular degeneration. Eye (London, England) 2017;31(1):26-44. - PMC - PubMed
Schünemann 2020a
    1. Schünemann HJ, Mustafa RA, Brozek J, Steingart KR, Leeflang M, Murad MH, et al. GRADE guidelines: 21 part 1. Study design, risk of bias, and indirectness in rating the certainty across a body of evidence for test accuracy. Journal of Clinical Epidemiology 2020;122:129-41. - PubMed
Schünemann 2020b
    1. Schünemann HJ, Mustafa RA, Brozek J, Steingart KR, Leeflang M, Murad MH, et al. GRADE guidelines: 21 part 2. Test accuracy: inconsistency, imprecision, publication bias, and other domains for rating the certainty of evidence and presenting it in evidence profiles and summary of findings tables. Journal of Clinical Epidemiology 2020;122:142-52. - PubMed
Sounderajah 2021a
    1. Sounderajah V, Ashrafian H, Golub RM, Shetty S, De Fauw J, Hooft L, et al. Developing a reporting guideline for artificial intelligence-centred diagnostic test accuracy studies: the STARD-AI protocol. BMJ Open 2021;11(6):e047709. - PMC - PubMed
Sounderajah 2021b
    1. Sounderajah V, Ashrafian H, Rose S, Shah NH, Ghassemi M, Golub R, et al. A quality assessment tool for artificial intelligence-centered diagnostic test accuracy studies: QUADAS-AI. Nature Medicine 2021;27(10):1663-5. - PubMed
Spaide 2020
    1. Spaide RF, Jaffe GJ, Sarraf D, Freund KB, Sadda SR, Staurenghi G, et al. Consensus nomenclature for reporting neovascular age-related macular degeneration data: consensus on neovascular age-related macular degeneration nomenclature study group. Ophthalmology 2020;127(5):616-36. [DOI: 10.1016/j.ophtha.2019.11.004] - DOI - PMC - PubMed
Spijker 2023
    1. Spijker R, Dinnes J, Glanville J, Eisinga A. Chapter 6: Searching for and selecting studies. In: Deeks JJ, Bossuyt PM, Leeflang MM, Takwoingi Y, editor(s). Cochrane Handbook for Systematic Reviews of Diagnostic Test Accuracy. Version 2.0 (updated July 2023). Cochrane, 2023. Available from training.cochrane.org/handbook-diagnostictest-accuracy/current.
STARE Project
    1. STructured Analysis of the Retina (STARE Project). Available from cecas.clemson.edu/~ahoover/stare/ Accessed 27 March 2023.
Stata 17 [Computer program]
    1. Stata. College Station, TX, USA: StataCorp, 2024. Available from https://www.stata.com.
Takwoingi 2023
    1. Takwoingi Y, Dendukuri N, Schiller I, Rücker G, Jones HE, Partlett C, et al. Chapter 10: Undertaking meta-analysis. In: Deeks JJ, Bossuyt PM, Leeflang MM, Takwoingi Y, editor(s). Cochrane Handbook for Systematic Reviews of Diagnostic Test Accuracy. Version 2.0 (updated July 2023). Cochrane, 2023. Available from training.cochrane.org/handbook-diagnostic-test-accuracy/current.
Thakoor 2022
    1. Thakoor KA, Yao J, Bordbar D, Moussa O, Lin W, Sajda P. A multimodal deep learning system to distinguish late stages of AMD and to compare expert vs. AI ocular biomarkers. Scientific Reports 2022;12(1):2585. - PMC - PubMed
Thomas 2021
    1. Thomas CJ, Mirza RG, Gill MK. Age-related macular degeneration. Medical Clinics of North America 2021;105(3):473-91. - PubMed
Ting 2019
    1. Ting DS, Pasquale LR, Peng L, Campbell JP, Lee AY, Raman R, et al. Artificial intelligence and deep learning in ophthalmology. British Journal of Ophthalmology 2019;103(2):167-75. - PMC - PubMed
Tseng 2021
    1. Tseng AS, Shelly-Cohen M, Attia IZ, Noseworthy PA, Friedman PA, Oh JK, et al. Spectrum bias in algorithms derived by artificial intelligence: a case study in detecting aortic stenosis using electrocardiograms. European Heart Journal Digital Health 2021;2(4):561-7. - PMC - PubMed
Van Lookeren Campagne 2014
    1. Van Lookeren Campagne M, LeCouter J, Yaspan BL, Ye W. Mechanisms of age-related macular degeneration and therapeutic opportunities. Journal of Pathology 2014;232(2):151-64. - PubMed
Vandevenne 2021
    1. Vandevenne MM, Favuzza E, Veta M, Lucenteforte E, Berendschot T, Mencucci R, et al. Artificial intelligence for detecting keratoconus. Cochrane Database of Systematic Reviews 2021, Issue 12. Art. No: CD014911. [DOI: 10.1002/14651858.CD014911] - DOI - PMC - PubMed
Wittenborn 2017
    1. Wittenborn JS, Clemons T, Regillo C, Rayess N, Liffmann Kruger D, Rein D. Economic evaluation of a home-based age-related macular degeneration monitoring system. JAMA Ophthalmology 2017;135(5):452-9. - PMC - PubMed
Wong 2014
    1. Wong WL, Su X, Li X, Cheung CM, Klein R, Cheng CY, et al. Global prevalence of age-related macular degeneration and disease burden projection for 2020 and 2040: a systematic review and meta-analysis. Lancet Global Health 2014;2(2):e106-16. - PubMed
Yadav 2016
    1. Yadav S, Shukla S. Analysis of k-fold cross-validation over hold-out validation on colossal datasets for quality classification. In: IEEE 6th International Conference on Advanced Computing (IACC). IEEE, 2016:78-83. [DOI: 10.1109/IACC.2016.25] - DOI
Yan 2020
    1. Yan Q, Weeks DE, Xin H, Swaroop A, Chew EY, Huang H, et al. Deep-learning-based prediction of late age-related macular degeneration progression. Nature Machine Intelligence 2020;2(2):141-50. - PMC - PubMed
Zhou 2021
    1. Zhou M, Duan P, Liang J, Zhang X, Pan C. Geographic distributions of age-related macular degeneration incidence: a systematic review and meta-analysis. British Journal of Ophthalmology 2021;105(10):1427-34. - PubMed

References to other published versions of this review

Kang 2023
    1. Kang C, Lin JC, Zhang H, Scott IU, Kalpathy-Cramer J, Liu SH, et al. Artificial intelligence for diagnosing exudative age-related macular degeneration. Cochrane Database of Systematic Reviews 2023, Issue 1. Art. No: CD015522. [DOI: 10.1002/14651858.CD015522] - DOI - PMC - PubMed

LinkOut - more resources