Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2024 Dec 1;80(Pt 6):548-574.
doi: 10.1107/S2052520624008679. Online ahead of print.

The seventh blind test of crystal structure prediction: structure ranking methods

Lily M Hunnisett  1 Nicholas Francia  1 Jonas Nyman  1 Nathan S Abraham  2 Srinivasulu Aitipamula  3 Tamador Alkhidir  4 Mubarak Almehairbi  4 Andrea Anelli  5 Dylan M Anstine  6 John E Anthony  7 Joseph E Arnold  8 Faezeh Bahrami  9 Michael A Bellucci  10 Gregory J O Beran  11 Rajni M Bhardwaj  2 Raffaello Bianco  12 Joanna A Bis  13 A Daniel Boese  14 James Bramley  8 Doris E Braun  15 Patrick W V Butler  8 Joseph Cadden  3 Stephen Carino  13 Ctirad Červinka  16 Eric J Chan  17 Chao Chang  18 Sarah M Clarke  19 Simon J Coles  8 Cameron J Cook  11 Richard I Cooper  20 Tom Darden  21 Graeme M Day  8 Wenda Deng  22 Hanno Dietrich  23 Antonio DiPasquale  24 Bhausaheb Dhokale  4 Bouke P van Eijck  25 Mark R J Elsegood  26 Dzmitry Firaha  23 Wenbo Fu  18 Kaori Fukuzawa  27 Nikolaos Galanakis  17 Hitoshi Goto  28 Chandler Greenwell  10 Rui Guo  29 Jürgen Harter  1 Julian Helfferich  23 Johannes Hoja  14 John Hone  30 Richard Hong  2 Michal Hušák  31 Yasuhiro Ikabata  28 Olexandr Isayev  6 Ommair Ishaque  32 Varsha Jain  21 Yingdi Jin  18 Aling Jing  32 Erin R Johnson  19 Ian Jones  30 K V Jovan Jose  33 Elena A Kabova  34 Adam Keates  30 Paul F Kelly  26 Jiří Klimeš  35 Veronika Kostková  16 He Li  18 Xiaolu Lin  18 Alexander List  14 Congcong Liu  18 Yifei Michelle Liu  23 Zenghui Liu  18 Ivor Lončarić  12 Joseph W Lubach  24 Jan Ludík  16 Alexander A Maryewski  36 Noa Marom  6 Hiroyuki Matsui  37 Alessandra Mattei  2 R Alex Mayo  19 John W Melkumov  32 Bruno Mladineo  12 Sharmarke Mohamed  4 Zahrasadat Momenzadeh Abardeh  36 Hari S Muddana  21 Naofumi Nakayama  28 Kamal Singh Nayal  6 Marcus A Neumann  23 Rahul Nikhar  32 Shigeaki Obata  28 Dana O'Connor  22 Artem R Oganov  36 Koji Okuwaki  38 Alberto Otero-de-la-Roza  39 Sean Parkin  7 Antonio Parunov  12 Rafał Podeszwa  40 Alastair J A Price  19 Louise S Price  29 Sarah L Price  29 Michael R Probert  41 Angeles Pulido  1 Gunjan Rajendra Ramteke  33 Atta Ur Rehman  32 Susan M Reutzel-Edens  1 Jutta Rogal  17 Marta J Ross  34 Adrian F Rumson  19 Ghazala Sadiq  1 Zeinab M Saeed  4 Alireza Salimi  9 Kiran Sasikumar  23 Sivakumar Sekharan  10 Kenneth Shankland  34 Baimei Shi  18 Xuekun Shi  18 Kotaro Shinohara  37 A Geoffrey Skillman  21 Hongxing Song  17 Nina Strasser  14 Jacco van de Streek  23 Isaac J Sugden  1 Guangxu Sun  18 Krzysztof Szalewicz  32 Lu Tan  18 Kehan Tang  22 Frank Tarczynski  13 Christopher R Taylor  8 Alexandre Tkatchenko  42 Petr Touš  16 Mark E Tuckerman  17 Pablo A Unzueta  11 Yohei Utsumi  38 Leslie Vogt-Maranto  17 Jake Weatherston  41 Luke J Wilkinson  26 Robert D Willacy  1 Lukasz Wojtas  43 Grahame R Woollam  44 Yi Yang  22 Zhuocen Yang  18 Etsuo Yonemochi  38 Xin Yue  18 Qun Zeng  18 Tian Zhou  18 Yunfei Zhou  18 Roman Zubatyuk  6 Jason C Cole  1
Affiliations

The seventh blind test of crystal structure prediction: structure ranking methods

Lily M Hunnisett et al. Acta Crystallogr B Struct Sci Cryst Eng Mater. .

Abstract

A seventh blind test of crystal structure prediction has been organized by the Cambridge Crystallographic Data Centre. The results are presented in two parts, with this second part focusing on methods for ranking crystal structures in order of stability. The exercise involved standardized sets of structures seeded from a range of structure generation methods. Participants from 22 groups applied several periodic DFT-D methods, machine learned potentials, force fields derived from empirical data or quantum chemical calculations, and various combinations of the above. In addition, one non-energy-based scoring function was used. Results showed that periodic DFT-D methods overall agreed with experimental data within expected error margins, while one machine learned model, applying system-specific AIMnet potentials, agreed with experiment in many cases demonstrating promise as an efficient alternative to DFT-based methods. For target XXXII, a consensus was reached across periodic DFT methods, with consistently high predicted energies of experimental forms relative to the global minimum (above 4 kJ mol-1 at both low and ambient temperatures) suggesting a more stable polymorph is likely not yet observed. The calculation of free energies at ambient temperatures offered improvement of predictions only in some cases (for targets XXVII and XXXI). Several avenues for future research have been suggested, highlighting the need for greater efficiency considering the vast amounts of resources utilized in many cases.

Keywords: Cambridge Structural Database; blind test; crystal structure prediction; lattice energy; polymorphism.

PubMed Disclaimer

Figures

Figure 1
Figure 1
Structure overlay of structures 28, 38, and 59 from the provided structure set for target XXVII, demonstrating the variation in TIPS conformation.
Figure 3
Figure 3
Examples of trans-square planar (left), cis-square planar (centre), and see-saw geometries of target XXVIII (right).
Figure 2
Figure 2
(Top) Lattice and free energy difference between structure 28 of molecule XXVII and structures 38, 61 and 59 which share the same core packing of the experimental form. The global minimum (black filled circle) of each group has been included to show if other packings were found to be more stable within an energy model. (Bottom) Lattice and free energy difference with respect to Form A of molecule XXVIII. The energy range between the global minimum (black filled circle) and the 100th ranked structure (open circle) is shown to highlight the position of the experimental structure within the CSP set. If a subset of less than 100 structures was used in the energy calculation, filled circle is used instead of an open circle. As the initial set of structures includes 500 structures, the experimental one can lie outside of the 1st–100th range. In both plots, groups are organized as in Table 2 ▸, with the methodology class shown at the top. Groups that did not participate in the ranking of these two compounds are shown with a grey cross, while those that did not reproduce the geometry of the most stable polymorph are displayed with a red cross. If any of the structures’ energies lie outside of the energy range considered, this is shown with an arrow.
Figure 4
Figure 4
Lattice and free energy difference of the experimental structures with respect to the most stable polymorph of molecule XXXI (top), XXXII (middle) and XXXIII (bottom). The energy range between the global minimum (black filled circle) and the 100th-ranked structure (open circle) is shown to highlight the position of the experimental structures within the CSP set. If a subset of less than 100 structures was used in the energy calculation, the filled circle is used instead of an open circle. As the initial set of structures of compounds XXXII and XXXIII includes 500 structures, the experimental one can lie outside of the 1st–100th range. Groups are organized as in Table 2 ▸, with the methodology class shown at the top of each plot. Groups that did not participate in the ranking of these compounds are shown with a grey cross, while those that did not reproduce the geometry of the most stable polymorph are displayed with a red cross. If any of the structures’ energies lie outside of the energy range considered, this is shown with an arrow. For molecule XXXI, Group 7 used a ranking method not based on thermodynamics but on topological probabilities (highlighted in red). In this case the higher the score, the more probable it is to observe a structure.

References

    1. Abramov, Y. A., Li, B., Chang, C., Zeng, Q., Sun, G. & Gobbo, G. (2021). Cryst. Growth Des.21, 5496–5502.
    1. Adamo, C. & Barone, V. (1999). J. Chem. Phys.110, 6158–6170.
    1. Addicoat, M., Adjiman, C. S., Arhangelskis, M., Beran, G. J. O., Bowskill, D., Brandenburg, J. G., Braun, D. E., Burger, V., Cole, J., Cruz-Cabeza, A. J., Day, G. M., Deringer, V. L., Guo, R., Hare, A., Helfferich, J., Hoja, J., Iuzzolino, L., Jobbins, S., Marom, N., McKay, D., Mitchell, J. B. O., Mohamed, S., Neumann, M., Nilsson Lill, S., Nyman, J., Oganov, A. R., Piaggi, P., Price, S. L., Reutzel-Edens, S., Rietveld, I., Ruggiero, M., Ryder, M. R., Sastre, G., Schön, J. C., Taylor, C., Tkatchenko, A., Tsuzuki, S., van den Ende, J., Woodley, S. M., Woollam, G. & Zhu, Q. (2018). Faraday Discuss.211, 325–381. - PubMed
    1. Anstine, D., Zubatyuk, R. & Isayev, O. (2023). ChemRxiv, 10.26434/chemrxiv-2023-296ch.
    1. Anstine, D. M. & Isayev, O. (2023). J. Phys. Chem. A, 127, 2417–2431. - PMC - PubMed