The VDR/FFAR2 axis mitigates sepsis-induced lung injury by suppressing macrophage lipid peroxidation
- PMID: 39418731
- DOI: 10.1016/j.intimp.2024.113328
The VDR/FFAR2 axis mitigates sepsis-induced lung injury by suppressing macrophage lipid peroxidation
Abstract
Sepsis-induced lung injury is a common critical condition in clinical practice, characterized by the accumulation of peroxides and inflammatory damage caused by excessive macrophage activation. Currently, effective treatments for sepsis-induced lung injury are lacking. Short-chain fatty acid receptor FFAR2 serves as an anti-inflammatory biomarker, but its role and mechanism in sepsis-induced lung injury remain unclear. To elucidate the influence and mechanism of FFAR2 on macrophage lipid peroxidation levels in sepsis-induced lung injury, this study conducted bioinformatics analysis and cellular experiments using the THP-1 macrophage cell line. By dual luciferase reporter and chromatin immunoprecipitation-quantitative PCR assays, it is confirmed that the transcription factor VDR upregulates FFAR2 expression in macrophages by binding to the promoter region -1695 ∼ 1525, thereby increasing the expression of iron death negative regulatory molecules and lowering macrophage lipid peroxidation levels. Moreover, both in vitro using THP-1 cells and bone marrow-derived macrophages (BMDMs) and in vivo using an LPS-induced septic mice model experiments revealed that activating the VDR/FFAR2 axis could reduce inflammation-induced macrophage lipid peroxide accumulation and alleviate lung injury in septic mice. This finding highlights the potential of FFAR2 as an immunotherapeutic target for mitigating sepsis-related lung injury.
Keywords: Acute lung injury; Lipid peroxidation; Macrophage; Sepsis.
Copyright © 2024 The Author(s). Published by Elsevier B.V. All rights reserved.
Conflict of interest statement
Declaration of competing interest The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.
MeSH terms
Substances
LinkOut - more resources
Full Text Sources
Medical
