Physicochemical Modulations in MXenes for Carbon Dioxide Mitigation and Hydrogen Generation: Tandem Dialogue between Theoretical Anticipations and Experimental Evidences
- PMID: 39418892
- DOI: 10.1016/j.jcis.2024.10.044
Physicochemical Modulations in MXenes for Carbon Dioxide Mitigation and Hydrogen Generation: Tandem Dialogue between Theoretical Anticipations and Experimental Evidences
Abstract
The dawn of MXenes has fascinated researchers under their intriguing physicochemical attributes that govern their energy and environmental applications. Modifications in the physicochemical properties of MXenes pave the way for efficient energy-driven operations such as carbon capture and hydrogen generation. The physicochemical modulations such as interface engineering through van der Waals coupling with homo/hetero-junctions render the tunability of optoelectronic variables driving the photochemical and electrochemical processes. Herein, we have reviewed the recent achievements in physicochemical properties of MXenes by highlighting the role of intercalants/terminal groups, atomic defects, surface chemistry and few/mono-layer formation. Recent findings of MXenes-based materials are systematically surveyed in a tandem manner with the future outlook for constructing next-generation multi-functional catalytic systems. Theoretical modelling of MXenes surface engineering proffers the mechanistic comprehension of surface phenomena such as termination, interface formation, doping and functionalization, thereby enabling the researchers to exploit them for targeted applications. Therefore, theoretical anticipations and experimental evidences of electrochemical/photochemical carbon dioxide reduction and hydrogen evolution reactions are synergistically discussed.
Keywords: Carbon capture; Hydrogen energy; MXenes; Physicochemical excellence; Surface Chemistry.
Copyright © 2024 Elsevier Inc. All rights reserved.
Conflict of interest statement
Declaration of competing interest The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.
LinkOut - more resources
Full Text Sources
