Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
Review
. 2025 Sep;182(18):4221-4235.
doi: 10.1111/bph.17374. Epub 2024 Oct 17.

Site-specific m6A-miR-494-3p, not unmethylated miR-494-3p, compromises blood brain barrier by targeting tight junction protein 1 in intracranial atherosclerosis

Affiliations
Review

Site-specific m6A-miR-494-3p, not unmethylated miR-494-3p, compromises blood brain barrier by targeting tight junction protein 1 in intracranial atherosclerosis

Tamar Woudenberg et al. Br J Pharmacol. 2025 Sep.

Abstract

Background and purpose: Intracranial atherosclerosis is one of the most common causes of ischaemic stroke. However, there is a substantial knowledge gap on the development of intracranial atherosclerosis. Intracranial arteries are characterized by an upregulation of tight junctions between endothelial cells, which control endothelial permeability. We investigated the role of N6-methyladenosine (m6A), a common RNA modification, on endothelial integrity, focusing on the pro-atherogenic microRNA miR-494-3p and tight junction proteins TJP1 and PECAM1.

Experimental approach: We assessed the m6A landscape, along with the expression of miR-494-3p, TJP1 and PECAM1 in postmortem human vertebral arteries (VA), internal carotid arteries (ICA), and middle cerebral arteries (MCA) with various stages of intimal thickening and plaque formation. The interactions between m6A-modified miR-494-3p mimics, TJP1 and PECAM1, were investigated in vitro using primary human (brain) endothelial cells.

Key results: Increased m6A expression was observed in the luminal lining of atherosclerosis-affected VAs, accompanied by reduced TJP1 and PECAM1, but not VE-cadherin, expression. Colocalization of m6A and miR-494-3p in the luminal lining of VA plaques was confirmed, indicating m6A methylation of miR-494-3p in intracranial atherosclerosis. Moreover, site-specific m6A-modification of miR-494-3p led to repression specifically of TJP1 protein expression at cell-cell junctions of brain microvascular endothelial cells, while unmodified miR-494-3p showed no effect.

Conclusions and implications: This study highlights increasing m6A levels during intracranial atherogenesis. Increases in m6A-miR-494-3p contribute to the observed decreased TJP1 expression in endothelial cell-cell junctions. This is likely to have a negative effect on endothelial integrity and may thus accelerate intracranial atherosclerosis progression.

Keywords: N6‐methyladenosine; TJP1; intracranial atherosclerosis; miR‐494‐3p.

PubMed Disclaimer

References

REFERENCES

    1. Alexander, S. P. H., Fabbro, D., Kelly, E., Mathie, A. A., Peters, J. A., Veale, E. L., Armstrong, J. F., Faccenda, E., Harding, S. D., Davies, J. A., Annett, S., Boison, D., Burns, K. E., Dessauer, C., Gertsch, J., Helsby, N. A., Izzo, A. A., Ostrom, R., Papapetropoulos, A., … Wong, S. S. (2023). The concise guide to PHARMACOLOGY 2023/24: Enzymes. British Journal of Pharmacology, 180, S289–S373. https://doi.org/10.1111/bph.16181
    1. Alexander, S. P. H., Roberts, R. E., Broughton, B. R. S., Sobey, C. G., George, C. H., Stanford, S. C., Cirino, G., Docherty, J. R., Giembycz, M. A., Hoyer, D., Insel, P. A., Izzo, A. A., Ji, Y., MacEwan, D. J., Mangum, J., Wonnacott, S., & Ahluwalia, A. (2018). Goals and practicalities of immunoblotting and immunohistochemistry: A guide for submission to the British Journal of pharmacology. British Journal of Pharmacology, 175(3), 407–411. https://doi.org/10.1111/bph.14112
    1. Bang, O. Y., Lee, P. H., Yoon, S. R., Lee, M. A., Joo, I. S., & Huh, K. (2005). Inflammatory markers, rather than conventional risk factors, are different between carotid and MCA atherosclerosis. Journal of Neurology, Neurosurgery, and Psychiatry, 76(8), 1128–1134. https://doi.org/10.1136/jnnp.2004.054403
    1. Bartel, D. P. (2009). MicroRNAs: Target recognition and regulatory functions. Cell, 136(2), 215–233. https://doi.org/10.1016/j.cell.2009.01.002
    1. Bauer, H. C., Krizbai, I. A., Bauer, H., & Traweger, A. (2014). “You shall not pass”‐tight junctions of the blood brain barrier. Frontiers in Neuroscience, 8, 392. https://doi.org/10.3389/fnins.2014.00392

MeSH terms

LinkOut - more resources