Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2024 Dec:151:105411.
doi: 10.1016/j.jdent.2024.105411. Epub 2024 Oct 18.

A 3D in vitro model of biphasic calcium phosphate (BCP) scaffold combined with human osteoblasts, osteoclasts, and endothelial cells as a platform to mimic the oral microenvironment for tissue regeneration

Affiliations
Free article

A 3D in vitro model of biphasic calcium phosphate (BCP) scaffold combined with human osteoblasts, osteoclasts, and endothelial cells as a platform to mimic the oral microenvironment for tissue regeneration

Domitilla Mandatori et al. J Dent. 2024 Dec.
Free article

Abstract

Objectives: This study aimed to develop an innovative 3D in vitro model based on the biphasic calcium phosphate (BCP) scaffold combined with human osteoblasts (hOBs), osteoclasts (hOCs), and endothelial cells to evaluate its effects on bone and vascular cells behavior.

Methods: To this end, an optimized mixture of hydroxyapatite (HA) and β-tricalcium phosphate (TCP) with a weight ratio of 30/70 was employed to develop a BCP scaffold using the computer-aided design (CAD) approach. The BCP scaffold was combined with primary cultures of hOBs, hOCs and human umbilical vein endothelial cells (HUVECs).

Results: Morphometric analyses using scanning electron microscopy (SEM) and X-ray micro-computed tomography, along with biomechanical testing, revealed that BCP scaffold exhibited a regular 3D structure with large interconnected internal pores (700 µm) and high mechanical strength. In terms of biological behavior, after 14 days of tri-culture with hOBs, hMCs and HUVECs, SEM, immunofluorescence, and histological analyses showed that all cell types were viable and adhered well to the entire surface of the scaffold. Interestingly, SEM and energy-dispersive X-ray spectroscopy analyses also revealed on the BCP scaffold the presence of mineralized matrix crystals of Ca, P, O and C within a tissue-like cell layer produced by the interaction of the three cell types.

Conclusions: Data confirmed the high performance of the BCP scaffold through biomechanical studies. Notably, for the first time, this study demonstrated the feasibility of combining BCP scaffold with hOBs, hOCs, and HUVEC, which remained viable and maintained their native phenotypes, creating also tissue-like cell layer.

Clinical significance: Although further investigation is needed, these results underscore the potential to develop a 3D in vitro model that mimics the oral microenvironment, which could be valuable for BTE approaches in vivo studies.

Keywords: 3D printing; Biphasic Calcium Phosphate (BCP); Jawbone regeneration; Scaffold; Tissue engineering.

PubMed Disclaimer

Conflict of interest statement

Declaration of competing interest The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

MeSH terms

LinkOut - more resources