Ag(I)-Catalyzed Oxidative Cyclization of 1,4-Diynamide-3-ols with N-Oxide for Divergent Synthesis of 2-Substituted Furan-4-carboxamide Derivatives
- PMID: 39437418
- PMCID: PMC11536374
- DOI: 10.1021/acs.joc.4c02096
Ag(I)-Catalyzed Oxidative Cyclization of 1,4-Diynamide-3-ols with N-Oxide for Divergent Synthesis of 2-Substituted Furan-4-carboxamide Derivatives
Abstract
This work reports Ag(I)-catalyzed oxidative cyclizations of 1,4-diynamide-3-ols with 8-methylquinoline oxide to form 2-substituted furan-4-carboxamides. The reaction chemoselectivity is distinct from that reported in previous work by Hashmi. We performed density functional theory calculations to elucidate our proposed mechanism after evaluation of the energy profiles of two possible pathways. In this Ag(I) catalysis, the calculations suggest that the amide and alkyne groups of the 3,3-dicarbonyl-2-alkyne intermediates tend to chelate with the Ag(I) catalyst, further inducing a formyl attack at the Ag(I)-π-alkyne moiety to deliver the observed products.
Conflict of interest statement
The authors declare no competing financial interest.
Figures
References
-
- Manna S. K.; Giri S.; Mondal S.; Sana R. N.; Samal A. K.; Mandal A. A Detailed Review on C-Fused Furan/3,4-Fused Furan Analog and its Potential Applications. ChemistrySelect 2023, 8, e20220315010.1002/slct.202203150. - DOI
- Lipshutz B. H. Five-membered heteroaromatic rings as intermediates in organic synthesis. Chem. Rev. 1986, 86, 795–819. 10.1021/cr00075a005. - DOI
- Hou X. L.; Yang Z.; Wong H. N. C.. Progress in Heterocyclic Chemistry; Gribble G. W., Gilchrist T. L., Eds.; Pergamon: Oxford, 2003; Vol. 15, pp 167–205.
- Donnelly D. M. X.; Meegan M. J.. Comprehensive Heterocyclic Chemistry; Katritzky A. R., Rees C. W., Eds.; Pergamon: Oxford, 1984; Vol. 4, pp 657–712.
-
-
For reviews, see:
- Hou X. L.; Cheung H. Y.; Hon T. Y.; Kwan P. L.; Lo T. H.; Tong S. Y.; Wong H. N. C. Regioselective Syntheses of Substituted Furans. Tetrahedron 1998, 54, 1955–2020. 10.1016/S0040-4020(97)10303-9. - DOI
- Keay B. A. Synthesis of Multi-Substituted Furan Rings: The Role of Silicon. Chem. Soc. Rev. 1999, 28, 209–215. 10.1039/a809439j. - DOI
- Gilchrist T. L. J. Synthesis of aromatic heterocycles. Chem. Soc., Perkin Trans 1999, 1, 2849–2866. 10.1039/a808162j. - DOI
- Hou X. L.; Yang Z.; Yang K.-S.; Wong H. N. C.. Progress in Heterocyclic Chemistry; Gribble G. W., Joule J. A., Eds.; Pergamon: Oxford, 2008; Vol. 19, p. 176.
-
-
-
Reviews for gold carbene
- Ye L.-W.; Zhu X.-Q.; Sahani R. L.; Xu Y.; Qian P.-C.; Liu R.-S. Nitrene Transfer and Carbene Transfer in Gold Catalysis. Chem. Rev. 2021, 121, 9039–9112. 10.1021/acs.chemrev.0c00348. - DOI - PubMed
- Wang T.; Hashmi A. S. 1,2-Migrations onto Gold Carbene Centers. Chem. Rev. 2021, 121, 8948–8978. 10.1021/acs.chemrev.0c00811. - DOI - PubMed
- Yeom H.-S.; Shin S. Catalytic access to α-oxo gold carbenes by N-O bond oxidants. Acc. Chem. Res. 2014, 47, 966–977. 10.1021/ar4001839. - DOI - PubMed
- Zhang L. A Non-Diazo Approach to α-Oxo Gold Carbenes via Gold-Catalyzed Alkyne Oxidation. Acc. Chem. Res. 2014, 47, 877–888. 10.1021/ar400181x. - DOI - PMC - PubMed
- Huple D. B.; Ghorpade S.; Liu R.-S. Recent Advances in Gold-Catalyzed N- and O-Functionalizations of Alkynes with Nitrones, Nitroso, Nitro and Nitroxy Species. Adv. Synth. Catal. 2016, 358, 1348–1367. 10.1002/adsc.201600018. - DOI
-
-
- Zheng Z.; Wang Z.; Wang Y.; Zhang L. Au-Catalysed Oxidative Cyclisation. Chem. Soc. Rev. 2016, 45, 4448–4458. 10.1039/C5CS00887E. - DOI - PubMed
- Liu L.; Zhang J. Gold–Catalyzed Transformations of α–Diazocarbonyl Compounds: Selectivity and Diversity. Chem. Soc. Rev. 2016, 45, 506–516. 10.1039/C5CS00821B. - DOI - PubMed
- Wang Y.; Muratore M. E.; Echavarren A. M. Gold carbene or carbenoid: is there a difference?. Chem.—Eur. J. 2015, 21, 7332–7339. 10.1002/chem.201406318. - DOI - PMC - PubMed
-
- Dudnik A. S.; Gevorgyan V. Metal-Catalyzed [1,2]-Alkyl Shift in Allenyl Ketones: Synthesis of Multisubstituted Furans. Angew. Chem., Int. Ed. 2007, 46 (27), 5195–5197. 10.1002/anie.200701128. - DOI - PMC - PubMed
- Zorba L.; Kidonakis M.; Saridakis I.; Stratakis M. Cycloisomerization of Conjugated Allenones into Furans under Mild Conditions Catalyzed by Ligandless Au Nanoparticles. Org. Lett. 2019, 21, 5552–5555. 10.1021/acs.orglett.9b01869. - DOI - PubMed
- Hu X.; Zhou B.; Jin H.; Liu Y.; Zhang L. Bifunctional Phosphine Ligand-enabled Gold-catalyzed Direct Cycloisomerization of Alkynyl Ketones to 2,5-Disubstituted Furans. Chem. Commun. 2020, 56, 7297–7300. 10.1039/D0CC01238F. - DOI - PubMed
- Sromek A. W.; Kel’in A. V.; Gevorgyan V. A Novel 1,2-Migration of Acyloxy, Phosphatyloxy, and Sulfonyloxy Groups in Allenes: Efficient Synthesis of Tri- and Tetrasubstituted Furans. Angew. Chem., Int. Ed. 2004, 43, 2280–2282. 10.1002/anie.200353535. - DOI - PMC - PubMed
- Liu Y.; Song F.; Song Z.; Liu M.; Yan B. Gold-Catalyzed Cyclization of (Z)-2-En-4-yn-1-ols: Highly Efficient Synthesis of Fully Substituted Dihydrofurans and Furans. Org. Lett. 2005, 7, 5409–5412. 10.1021/ol052160r. - DOI - PubMed
- Schwier T.; Sromek A. W.; Yap D. M. L.; Chernyak D.; Gevorgyan V. Mechanistically Diverse Copper-Silver-and Gold-Catalyzed Acyloxy and Phosphatyloxy Migrations: Efficient Synthesis of Heterocycles via Cascade Migration/Cycloisomerization Approach. J. Am. Chem. Soc. 2007, 129, 9868–9878. 10.1021/ja072446m. - DOI - PMC - PubMed
- Xiao X.; Liu S.; Cai M. Recyclable gold(I)-catalyzed oxidative cyclization of 1,4-diyn-3-ols leading to highly substituted 3-formylfurans. J. Organomet. Chem. 2022, 982, 122527.10.1016/j.jorganchem.2022.122527. - DOI
LinkOut - more resources
Full Text Sources
Research Materials
Miscellaneous