Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2024 Nov 6;16(44):61239-61248.
doi: 10.1021/acsami.4c10853. Epub 2024 Oct 23.

Epitaxial Orientation-Controlled High Crystallinity and Ferroelectric Properties in Hf0.5Zr0.5O2 Films

Affiliations

Epitaxial Orientation-Controlled High Crystallinity and Ferroelectric Properties in Hf0.5Zr0.5O2 Films

Kai Liu et al. ACS Appl Mater Interfaces. .

Abstract

Hafnium-based binary oxides are essential for fabricating nanoscale high-density ferroelectric memory devices. However, effective strategies to control and improve their thin-film single crystallinity and metastable ferroelectricity remain elusive, hindering potential applications. Here, using NdGaO3 (NGO) substrates with four crystalline orientations, we report a systematic study of the structural characterizations and ferroelectric properties of epitaxial Hf0.5Zr0.5O2 (HZO) films, demonstrating orientation-controlled high crystallinity and enhanced ferroelectric properties. HZO films grown on NGO(001) and NGO(110) substrates exhibit relatively low crystallinity and a significant presence of the monoclinic phase. In contrast, HZO films grown on NGO(100) and NGO(010) possess high single crystallinity and a dominant ferroelectric phase. These differences are attributed to the surface symmetry of the NGO substrate, which favors the formation of 4- or 2-fold domain configurations. Moreover, the optimized HZO films exhibit a large polarization (2Pr) of ∼50 μC/cm2, enhanced fatigue behavior up to 1011 cycles, improved retention of 2Pr ∼ 40 μC/cm2 after 10 years, and characteristic polarization switching speeds in the submicrosecond range. Our results highlight the importance of modulating the single crystallinity and ferroelectric phase fraction of HfO2-based films to enhance ferroelectric properties, further revealing the potential of epitaxial symmetry engineering.

Keywords: epitaxial Hf0.5Zr0.5O2 films; fatigue; ferroelectricity; polarization switching; retention; single crystallinity; symmetry engineering.

PubMed Disclaimer

Similar articles

LinkOut - more resources