Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2024 Dec:181:111795.
doi: 10.1016/j.ejrad.2024.111795. Epub 2024 Oct 18.

Machine learning-based discrimination of benign and malignant breast lesions on US: The contribution of shear-wave elastography

Affiliations
Free article

Machine learning-based discrimination of benign and malignant breast lesions on US: The contribution of shear-wave elastography

Ludovica Rita La Rocca et al. Eur J Radiol. 2024 Dec.
Free article

Abstract

Purpose: To build and validate a combined radiomics and machine learning (ML) approach using B-mode US and SWE images to differentiate benign from malignant solid breast lesions (BLs) and compare its performance with that of an expert radiologist.

Methods: Patients with at least one BI-RADS 2-6 BL who performed breast US integrated with SWE were retrospectively included. B-mode US and SWE images were manually segmented to extract radiomics features. A multi-step feature selection process was performed and a predictive model built using the Logistic Regression algorithm. The diagnostic accuracy was evaluated with the AUC and Matthews Correlation Coefficient (MCC) metrics. The performance of the ML classifier was compared to that of an expert radiologist.

Results: 427 Bls were included and divided into a training (286 BLs, of which 127 benign and 159 malignant) and a test set (141 BLs, of which 59 benign and 82 malignant). Of 1098 features extracted from B-mode US and SWE images, 13 were finally selected. The ML classifier showed an AUC of 0.768 and 0.746, and an MCC of 0.403 and 0.423 in the training and test sets, respectively. The performance was higher than that of the expert radiologist assessing only B-mode US images, but significantly lower when SWE images were also provided.

Conclusion: A ML approach based on B-mode US and SWE images may represent a potential tool in the characterization of BLs. SWE still gives its most relevant contribution in the clinical setting rather than included in a radiomics pipeline.

Keywords: Artificial intelligence; Breast cancer; Radiomics; Ultrasound.

PubMed Disclaimer

Conflict of interest statement

Declaration of competing interest The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

LinkOut - more resources