Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2025 Mar 20;32(3):408-422.e6.
doi: 10.1016/j.chembiol.2024.09.008. Epub 2024 Oct 22.

Lipid availability influences ferroptosis sensitivity in cancer cells by regulating polyunsaturated fatty acid trafficking

Affiliations

Lipid availability influences ferroptosis sensitivity in cancer cells by regulating polyunsaturated fatty acid trafficking

Kelly H Sokol et al. Cell Chem Biol. .

Abstract

Ferroptosis is a form of cell death caused by lipid peroxidation that is emerging as a target for cancer therapy, highlighting the need to identify factors that govern ferroptosis susceptibility. Lipid peroxidation occurs primarily on phospholipids containing polyunsaturated fatty acids (PUFAs). Here, we show that even though extracellular lipid limitation reduces cellular PUFA levels, lipid-starved cancer cells are paradoxically more sensitive to ferroptosis. Using mass spectrometry-based lipidomics with stable isotope fatty acid labeling, we show that lipid limitation induces a fatty acid trafficking pathway in which PUFAs are liberated from triglycerides to synthesize highly unsaturated PUFAs such as arachidonic and adrenic acid. These PUFAs then accumulate in phospholipids, including ether phospholipids, to promote ferroptosis sensitivity. Therefore, PUFA levels within cancer cells do not necessarily correlate with ferroptosis susceptibility. Rather, how cancer cells respond to extracellular lipid levels by trafficking PUFAs into proper phospholipid pools contributes to their sensitivity to ferroptosis.

Keywords: cancer; ferroptosis; lipid metabolism; phospholipids; polyunsaturated fatty acids; triglycerides.

PubMed Disclaimer

Conflict of interest statement

Declaration of interests The authors declare no competing interests.

Update of

References

    1. Dixon SJ, and Stockwell BR (2019). The hallmarks of ferroptosis. Annual Review of Cancer Biology 3, 35–54.
    1. Jiang X, Stockwell BR, and Conrad M (2021). Ferroptosis: mechanisms, biology and role in disease. Nat Rev Mol Cell Biol 22, 266–282. 10.1038/s41580-020-00324-8. - DOI - PMC - PubMed
    1. Dixon SJ, Lemberg KM, Lamprecht MR, Skouta R, Zaitsev EM, Gleason CE, Patel DN, Bauer AJ, Cantley AM, Yang WS, et al. (2012). Ferroptosis: an iron-dependent form of nonapoptotic cell death. Cell 149, 1060–1072. 10.1016/j.cell.2012.03.042. - DOI - PMC - PubMed
    1. Yang WS, SriRamaratnam R, Welsch ME, Shimada K, Skouta R, Viswanathan VS, Cheah JH, Clemons PA, Shamji AF, Clish CB, et al. (2014). Regulation of ferroptotic cancer cell death by GPX4. Cell 156, 317–331. 10.1016/j.cell.2013.12.010. - DOI - PMC - PubMed
    1. Bersuker K, Hendricks JM, Li Z, Magtanong L, Ford B, Tang PH, Roberts MA, Tong B, Maimone TJ, Zoncu R, et al. (2019). The CoQ oxidoreductase FSP1 acts parallel to GPX4 to inhibit ferroptosis | Nature. Nature 575, 688–692. 10.1038/S41586-019-1705-2. - DOI - PMC - PubMed

LinkOut - more resources