Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
Review
. 2024 Nov 11;37(4).
doi: 10.1088/1361-648X/ad8ab9.

Geometry, anomaly, topology, and transport in Weyl fermions

Affiliations
Review

Geometry, anomaly, topology, and transport in Weyl fermions

Azaz Ahmad et al. J Phys Condens Matter. .

Abstract

Weyl fermions are one of the simplest objects that link ideas in geometry and topology to high-energy physics and condensed matter physics. Although the existence of Weyl fermions as elementary particles remains dubious, there is mounting evidence of their existence as quasiparticles in certain condensed matter systems. Such systems are termed Weyl semimetals (WSMs). Needless to say, WSMs have emerged as a fascinating class of materials with unique electronic properties, offering a rich playground for both fundamental research and potential technological applications. This review examines recent advancements in understanding electron transport in WSMs. We begin with a pedagogical introduction to the geometric and topological concepts critical to understanding quantum transport in Weyl fermions. We then explore chiral anomaly, a defining feature of WSMs, and its impact on transport phenomena such as longitudinal magnetoconductance and planar Hall effect. The Maxwell-Boltzmann transport theory extended beyond the standard relaxation-time approximation is then discussed in the context of Weyl fermions, which is used to evaluate various transport properties. Attention is also given to the effects of strain-induced gauge fields and external magnetic fields in both time-reversal broken and inversion asymmetric inhomogeneous WSMs. The review synthesizes theoretical insights, experimental observations, and numerical simulations to provide a comprehensive understanding of the complex transport behaviors in WSMs, aiming to bridge the gap between theoretical predictions and experimental verification.

Keywords: Weyl fermions; chiral anomaly; geometry; magnetotransport; topology.

PubMed Disclaimer

LinkOut - more resources