Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2024 Dec;282(Pt 2):136645.
doi: 10.1016/j.ijbiomac.2024.136645. Epub 2024 Oct 21.

Influence of copper ion cross-linked CMC-PVA film on cell viability and cell proliferation study

Affiliations

Influence of copper ion cross-linked CMC-PVA film on cell viability and cell proliferation study

Neha R Thakare et al. Int J Biol Macromol. 2024 Dec.

Abstract

In this study, films composed of carboxymethyl cellulose and polyvinyl alcohol were fabricated using the solution casting method. Citric acid (4 %) was employed as a cross-linking agent, while glycerol (3 %) as a plasticizer. Cupric chloride (CuCl2·2H2O) was used for cross-linking at concentrations 0.5 %, 1 %, and 3 % over different times. The cross-linking with copper ions led to a noticeable reduction in elasticity, with the breaking strain ranging from 17.9 %-52.9 %, and increased the contact angle. The ion hydration phenomenon increased the swelling ratio of the films. Fourier-transform infrared (FTIR) spectroscopy confirmed the esterification reactions and copper ion cross-linking with sodium carboxymethyl cellulose (Na-CMC). The films showed antibacterial activity against Staphylococcus aureus and Escherichia coli. The ion-released mechanism followed was the non-Fickian super case-II type. The concentration and duration of cross-linking significantly influenced the cell viability and proliferation. FE-SEM analysis revealed that effective concentrations of CuCl2.2H2O were 0.5 % and 1 %, and the cross-linking times were 5-15 min, facilitating cell attachment and proliferation. Films are non-adhesive with water vapor permeation 800-900 g/m2/day. These results indicate the potential use of the films in treating second-degree burn wounds with low to medium exudate levels. This study provides valuable insights into the development of copper-infused materials for advanced wound healing applications.

Keywords: Biopolymer film; Cell proliferation and viability; Divalent ion cross-linking.

PubMed Disclaimer

Conflict of interest statement

Declaration of competing interest The authors declare no conflict of interest.

MeSH terms

LinkOut - more resources