Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2024 Nov;635(8037):96-101.
doi: 10.1038/s41586-024-08080-x. Epub 2024 Oct 23.

Carbon dioxide capture from open air using covalent organic frameworks

Affiliations

Carbon dioxide capture from open air using covalent organic frameworks

Zihui Zhou et al. Nature. 2024 Nov.

Erratum in

Abstract

Capture of CO2 from the air offers a promising approach to addressing climate change and achieving carbon neutrality goals1,2. However, the development of a durable material with high capacity, fast kinetics and low regeneration temperature for CO2 capture, especially from the intricate and dynamic atmosphere, is still lacking. Here a porous, crystalline covalent organic framework (COF) with olefin linkages has been synthesized, structurally characterized and post-synthetically modified by the covalent attachment of amine initiators for producing polyamines within the pores. This COF (termed COF-999) can capture CO2 from open air. COF-999 has a capacity of 0.96 mmol g-1 under dry conditions and 2.05 mmol g-1 under 50% relative humidity, both from 400 ppm CO2. This COF was tested for more than 100 adsorption-desorption cycles in the open air of Berkeley, California, and found to fully retain its performance. COF-999 is an exceptional material for the capture of CO2 from open air as evidenced by its cycling stability, facile uptake of CO2 (reaches half capacity in 18.8 min) and low regeneration temperature (60 °C).

PubMed Disclaimer

References

    1. Lackner, K., Ziock, H.-J. & Grimes, P. Carbon dioxide extraction from air: is it an option? in 24th Annual Technical Conference on Coal Utilization and Fuel Systems (Clearwater, 1999).
    1. Lackner, K. S. et al. The urgency of the development of CO2 capture from ambient air. Proc. Natl Acad. Sci. USA 109, 13156–13162 (2012). - DOI - PubMed - PMC
    1. Sanz-Pérez, E. S., Murdock, C. R., Didas, S. A. & Jones, C. W. Direct capture of CO2 from ambient air. Chem. Rev. 116, 11840–11876 (2016). - DOI - PubMed
    1. Shi, X. et al. Sorbents for the direct capture of CO2 from ambient air. Angew. Chem. Int. Ed. 59, 6984–7006 (2020). - DOI
    1. Zhu, X. et al. Recent advances in direct air capture by adsorption. Chem. Soc. Rev. 51, 6574–6651 (2022). - DOI - PubMed

LinkOut - more resources