Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 1986 Feb:67 ( Pt 2):229-34.
doi: 10.1099/0022-1317-67-2-229.

Lethal 17D yellow fever encephalitis in mice. I. Passive protection by monoclonal antibodies to the envelope proteins of 17D yellow fever and dengue 2 viruses

Lethal 17D yellow fever encephalitis in mice. I. Passive protection by monoclonal antibodies to the envelope proteins of 17D yellow fever and dengue 2 viruses

M W Brandriss et al. J Gen Virol. 1986 Feb.

Abstract

Monoclonal antibodies to the envelope proteins (E) of the 17D vaccine strain of yellow fever virus (17D YF) and to dengue 2 virus were examined for their ability to confer passive protection against lethal 17D YF encephalitis in mice. All 13 IgG anti-17D YF antibodies, regardless of neutralizing capacity, conferred solid protection when given in a relatively high dose prior to intracerebral inoculation of virus. Three antibodies with high in vitro neutralizing titres were all protective at a low dose as were several non-neutralizing antibodies. One flavivirus group-reactive antibody to dengue 2 virus conferred similar protection at low dose. Protection was also observed when antibodies were given several days after virus inoculation when peak infectious virus titres and histopathological evidence of infection were present in brains. The ability of a non-neutralizing antibody to protect could not be attributed to complement-dependent lysis of virus-infected cells and did not correlate with avidity or with proximity of its binding site to a critical neutralizing epitope of the E protein. Some antibodies, characterized as non-neutralizing by plaque reduction assay on Vero cells, inhibited the growth of virus in a mouse neuroblastoma cell line, suggesting one possible mechanism of protection. These results may be relevant to the design of prospective flavivirus vaccines and support the possibility of conferring broadened protection among flaviviruses by stimulating the antibody response to appropriate epitopes of the E protein.

PubMed Disclaimer

LinkOut - more resources