Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2024 Nov 26;18(47):32421-32437.
doi: 10.1021/acsnano.4c04730. Epub 2024 Oct 25.

Efficient, High-Quality Engineering of Therapeutic Extracellular Vesicles on an Integrated Nanoplatform

Affiliations

Efficient, High-Quality Engineering of Therapeutic Extracellular Vesicles on an Integrated Nanoplatform

Yuqiong Wang et al. ACS Nano. .

Abstract

Engineered extracellular vesicles (EVs) have been recognized as important therapeutics for gene and cell therapy. To achieve clinically desired therapy, technologies for EV engineering have high demands on the efficacy in producing EVs and their qualities, which, however, remain challenging to conventional routes due to their limited control on therapeutic payload delivery, EV secretion, and extracellular microenvironments. Here, we report a nanoplatform (denoted as PURE) that enables efficient electro-transfection while stimulating cells to produce high-quality EVs carrying functional RNAs. PURE further employs an ammonium removal zone to maintain the physiological conditions of the extracellular microenvironment and an EV uptake zone that efficiently (87.1%) captures EVs in situ with porous hydrogels. The platform achieved about a 12-fold higher yield of engineered EVs and a 146-fold abundance of desired therapeutics compared to those naturally secreted from cells. The PURE-engineered miR-130a-EVs were validated for effectively upregulating the mTOR signaling pathway in both in vitro and in vivo. Their therapeutic capability was then verified by enhancing the in vitro activation of primordial follicles. In vivo applications further highlighted the therapeutic effects of miR-130a-EVs in restoring ovary function in aged mice. The PURE platform represents a strategy for the clinical translation of EV-mediated therapy.

Keywords: Tesla valve; extracellular vesicles; microfluidics; nanopore electroporation; primordial follicle activation.

PubMed Disclaimer

References

Publication types

LinkOut - more resources