Artificial Intelligence in Uropathology
- PMID: 39451602
- PMCID: PMC11506825
- DOI: 10.3390/diagnostics14202279
Artificial Intelligence in Uropathology
Abstract
The global population is currently at unprecedented levels, with an estimated 7.8 billion people inhabiting the planet. We are witnessing a rise in cancer cases, attributed to improved control of cardiovascular diseases and a growing elderly population. While this has resulted in an increased workload for pathologists, it also presents an opportunity for advancement. The accurate classification of tumors and identification of prognostic and predictive factors demand specialized expertise and attention. Fortunately, the rapid progression of artificial intelligence (AI) offers new prospects in medicine, particularly in diagnostics such as image and surgical pathology. This article explores the transformative impact of AI in the field of uropathology, with a particular focus on its application in diagnosing, grading, and prognosticating various urological cancers. AI, especially deep learning algorithms, has shown significant potential in improving the accuracy and efficiency of pathology workflows. This comprehensive review is dedicated to providing an insightful overview of the primary data concerning the utilization of AI in diagnosing, predicting prognosis, and determining drug responses for tumors of the urinary tract. By embracing these advancements, we can look forward to improved outcomes and better patient care.
Keywords: artificial intelligence; bladder cancer; diagnosis; prognosis; prostate cancer; renal cell cancer; uropathology.
Conflict of interest statement
We declare that we do not have any conflicts of interest regarding this article.
References
-
- Pantanowitz L., Quiroga-Garza G.M., Bien L., Heled R., Laifenfeld D., Linhart C., Sandbank J., Albrecht Shach A., Shalev V., Vecsler M., et al. An artificial intelligence algorithm for prostate cancer diagnosis in whole slide images of core needle biopsies: A blinded clinical validation and deployment study. Lancet Digit. Health. 2020;2:e407–e416. doi: 10.1016/S2589-7500(20)30159-X. - DOI - PubMed
-
- Bulten W., Pinckaers H., van Boven H., Vink R., de Bel T., van Ginneken B., van der Laak J., Hulsbergen-van de Kaa C., Litjens G. Automated deep-learning system for Gleason grading of prostate cancer using biopsies: A diagnostic study. Lancet Oncol. 2020;21:233–241. doi: 10.1016/S1470-2045(19)30739-9. - DOI - PubMed
Publication types
LinkOut - more resources
Full Text Sources