HIF-1α stabilization inhibits Japanese encephalitis virus propagation and neurotoxicity via autophagy pathways
- PMID: 39454305
- DOI: 10.1016/j.bbrc.2024.150853
HIF-1α stabilization inhibits Japanese encephalitis virus propagation and neurotoxicity via autophagy pathways
Abstract
Japanese encephalitis (JE) is a widespread flavivirus that induces brain inflammation and affects the central nervous system (CNS). Deferoxamine, an iron chelator, has shown promising results in stabilizing HIF-1α, a protein that improves hypoxic conditions, offers protective effects against neurological, and neurodegenerative diseases. This study aimed to assess the impact of HIF-1α stabilization during JEV infection using SH-SY5Y neuroblastoma cell lines as a model. Our findings demonstrated that deferoxamine treatment increased HIF-1α protein levels, leading to a reduction in JEV propagation. Moreover, RT-PCR analysis revealed that deferoxamine ameliorated JEV-induced neuroinflammation and neurotoxicity. We proved that inducing HIF-1α is essential for having an impact of deferoxamine against JEV-mediated neurotoxicity. Thus, our findings offer a potential therapeutic approach to mitigate the detrimental effects of JEV infection on neuronal cells. Further investigations also demonstrated that deferoxamine could reverse JEV-induced autophagy inhibition by stabilizing HIF-1α, which plays a crucial role in mitigating neuronal cell damage and neuroinflammation. Based on our data, HIF-1α stabilization emerges as a vital factor against JEV infection in the neurons, highlighting deferoxamine as a promising and innovative target for developing anti-JEV agents.
Keywords: Autophagy; Deferoxamine; HIF-1α; Hypoxia; Japanese encephalitis virus.
Copyright © 2024 The Authors. Published by Elsevier Inc. All rights reserved.
Conflict of interest statement
Declaration of competing interest The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.
References
Publication types
MeSH terms
Substances
LinkOut - more resources
Full Text Sources
Other Literature Sources
