Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
Review
. 2024 Nov;85(6):111161.
doi: 10.1016/j.humimm.2024.111161. Epub 2024 Oct 24.

Decoy oligodeoxynucleotides: A promising therapeutic strategy for inflammatory skin disorders

Affiliations
Review

Decoy oligodeoxynucleotides: A promising therapeutic strategy for inflammatory skin disorders

Maryam Mahjoubin-Tehran et al. Hum Immunol. 2024 Nov.

Abstract

Chronic inflammatory skin conditions such as psoriasis and atopic dermatitis (AD) impose a significant burden on both the skin and the overall well-being of individuals, leading to a diminished quality of life. Despite the use of conventional treatments like topical steroids, there remains a need for more effective and safer therapeutic options to improve the lives of patients with severe skin conditions. Molecular therapy has emerged as a promising approach to address disorders such as atopic dermatitis, psoriasis, and contact hypersensitivity. One strategy to counteract the disease processes involves targeting the transcriptional process. A novel form of gene therapy utilizes double-stranded oligodeoxynucleotides (ODNs), also known as decoys, that contain cis-elements. By introducing these decoy ODNs through transfection, the cis-trans interactions are disrupted, leading to the inhibition of trans-factors from binding to the intrinsic cis-elements and thus regulating gene expression. In this review, we have summarized studies investigating the therapeutic effects of decoy ODNs on inflammatory skin diseases. Various transcription factors, including NF-kB, STAT6, HIF-1α/STAT5, STAT1, and Smad, have been targeted and inhibited using designed decoy ODNs for the treatment of atopic dermatitis, psoriasis, hypertrophic scarring, and contact hypersensitivity. The findings of these studies confirm the significant potential of the decoy approach in the treatment of inflammatory skin diseases.

Keywords: Atopic dermatitis; Decoy; Inflammatory; Psoriasis; Skin diseases; Therapeutics.

PubMed Disclaimer

Conflict of interest statement

Declaration of competing interest The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Similar articles

Cited by

Substances

LinkOut - more resources