Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2024 Dec;282(Pt 2):136885.
doi: 10.1016/j.ijbiomac.2024.136885. Epub 2024 Oct 23.

Expression and characterization of a novel halophilic GH10 β-1,4-xylanase from Trichoderma asperellum ND-1 and its synergism with a commercial α-L-arabinofuranosidase on arabinoxylan degradation

Affiliations

Expression and characterization of a novel halophilic GH10 β-1,4-xylanase from Trichoderma asperellum ND-1 and its synergism with a commercial α-L-arabinofuranosidase on arabinoxylan degradation

Fengzhen Zheng et al. Int J Biol Macromol. 2024 Dec.

Abstract

Enzymatic hydrolysis of arabinoxylan is of cost-effective strategy to yield valuable macromolecules, e.g., xylooligosaccharides (XOS). A novel halophilic GH10 xylanase (TaXYL10) from Trichoderma asperellum ND-1 was over-expressed in Pichia pastoris and migrated as a single band (~36 kDa) in SDS-PAGE. TaXYL10 displayed >80 % activity in the presence of 4.28 M NaCl and 10 % ethanol. Moreover, TaXYL10 exhibited optimal activity at pH 6.0 and 55 °C, and remarkable pH stability (>80 % activity at pH 4.0-6.0). K+ and Al3+ could remarkably promote TaXYL10 activity, while the presence of 10 mM Fe2+, Zn2+, Cu2+ and Fe3+ decreased its activity. TaXYL10 possesses the highest catalytic activity towards beechwood xylan. TLC analysis revealed that it could rapidly degrade xylan and XOS with DP ≥ 3, yielding xylotriose and xylobiose. Site-directed mutagenesis indicated that Glu154 and Glu259 are crucial active residues for TaXYL10, while Asp295 and Glu69 played auxiliary roles in xylan hydrolysis. Additionally, TaXYL10 acted cooperatively with a commercial α-L-arabinofuranosidase (AnAra) towards arabinoxylan degradation (583.5 μg/mL), a greater synergy degree of 1.79 was obtained after optimizing enzymatic ratios. This work not only expands the diversity of Trichoderma GH10 xylanases, but also reveals the promising potential of TaXYL10 in various industrial applications.

Keywords: Catalytic sites; Cleavage pattern; Halophilic xylanase; Synergistic action; Trichoderma asperellum.

PubMed Disclaimer

Conflict of interest statement

Declaration of competing interest The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Similar articles

Cited by

  • Halophilic Fungi-Features and Potential Applications.
    Yovchevska L, Gocheva Y, Stoyancheva G, Miteva-Staleva J, Dishliyska V, Abrashev R, Stamenova T, Angelova M, Krumova E. Yovchevska L, et al. Microorganisms. 2025 Jan 15;13(1):175. doi: 10.3390/microorganisms13010175. Microorganisms. 2025. PMID: 39858943 Free PMC article. Review.

MeSH terms

Supplementary concepts

LinkOut - more resources