Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2024 Oct 13;13(20):6101.
doi: 10.3390/jcm13206101.

Analysis of Risk Factors with Assessment of the Impact of the Microbiome on the Risk of Squamous Cell Carcinoma of the Larynx

Affiliations

Analysis of Risk Factors with Assessment of the Impact of the Microbiome on the Risk of Squamous Cell Carcinoma of the Larynx

Karolina Dorobisz et al. J Clin Med. .

Abstract

Introduction: Head and neck squamous cell carcinoma (HNSCC) ranks sixth among cancers in the world, and the 5-year survival rate ranges from 25% to 60%. The risk factors for HNSCC are primarily smoking, alcohol consumption and human papillomavirus (HPV). Data indicate that 15-20% of cancers are caused by infectious agents, 20-30% by smoking and 30-35% by unhealthy lifestyles, diet, lack of physical activity and obesity. Dysbiosis is a microbiome imbalance, which promotes oncogenesis by intensifying inflammatory processes and affecting the host's metabolism. Profiling the microbiome in various types of cancer is currently the subject of research and analysis. However, there is still little information on the correlation of the microbiome with HNSCC and its impact on oncogenesis, the course of the disease and its treatment. Objective: The aim of the study was to prospectively assess risk factors with assessment of the impact of the microbiome on the risk of squamous cell carcinoma of the larynx. The study included a group of 44 patients diagnosed with squamous cell carcinoma of the larynx and 30 patients from the control group. Results: In the control group, bacteria of the normal microbiome dominated-the genus Streptococcus, Gemella, Neisseria and Kingella. In the group of patients with laryngeal cancer, Prevotella, Clostridiales and Stomatobaculum were found significantly more often. Porphyromonas, Fusobacterium, Lactobacillus, Actinobacteria, Actinomyces and Shaalia odontolytica were also found at a higher percentage in the study group. Analyzing the phylum, Firmicutes dominated in the control group; there were statistically significantly more of them than in patients from the study group. Bacteroides and Bacillota were found significantly more often in patients with laryngeal cancer. Conclusions: The importance of the microbiome in oncology has been confirmed in many studies. Independent risk factors for laryngeal cancer were primarily a lower number of Firmicutes in the microbiome, but also an increased leukocyte level above 6.52 × 103/mm and a decreased total protein level below 6.9 g/dL. Prevotella, Clostridiales, Stomatobaculum, Porphyromonas, Fusobacterium, Lactobacillus, Actinobacteria, Actinomyces and Shaalia were considered to be the bacteria contributing to the development of laryngeal cancer. Streptococcus, Gemella, Neisserie and Kingella were considered to be protective bacteria. Moreover, the study confirmed the significant impact of smoking, alcohol consumption and poor oral hygiene on the development of laryngeal cancer. The microbiome, its identification and manipulation may constitute a breakthrough discovery for improving the diagnosis and oncological therapy of laryngeal cancer, and also of the entire group of HNSCC. Profiling the microbiome may allow for personalized therapy related to its modification. Assessing the microbiome of patients diagnosed with cancer may provide an opportunity to predict treatment response and effectiveness.

Keywords: dysbiosis; head and neck cancer; laryngeal cancer; microbiome; risk factors.

PubMed Disclaimer

Conflict of interest statement

The authors declare no conflicts of interest. The funders had no role in the design of this study; in the collection, analyses, or interpretation of data; in the writing of the manuscript, or in the decision to publish the results.

Figures

Figure 1
Figure 1
Microbiome of the study and control groups.
Figure 2
Figure 2
ROC curve for estimating the probability of the presence of head and neck cancer based on a logit model taking into account the number of leukocytes, total protein concentration and the percentage of bacteria from the Firmicutes phylum in the microbiota. Cut-off value and area under the curve.

Similar articles

Cited by

References

    1. Bray F., Ferlay J., Soerjomataram I., Siegel R.L., Torre L.A., Jemal A. Global cancer statistics 2018: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J. Clin. 2018;68:394–424. doi: 10.3322/caac.21492. - DOI - PubMed
    1. Gatta G., Botta L., Sánchez M.J., Anderson L.A., Pierannunzio D., Licitra L. EUROCARE Working Group: Prognoses and improvement for head and neck cancers diagnosed in Europe in early 2000s: The EUROCARE-5 population-based study. Eur. J. Cancer. 2015;51:2130–2143. doi: 10.1016/j.ejca.2015.07.043. - DOI - PubMed
    1. Parkin D.M., Bray F., Ferlay J., Pisani P. Global Cancer Statistics, 2002. CA Cancer J. Clin. 2005;55:74–108. doi: 10.3322/canjclin.55.2.74. - DOI - PubMed
    1. Song Y., Li L., Ou Y., Gao Z., Li E., Li X., Zhang W., Wang J., Xu L., Zhou Y., et al. Identification of genomic alterations in oesophageal squamous cell cancer. Nature. 2014;509:91–95. doi: 10.1038/nature13176. - DOI - PubMed
    1. Huang T.T., Lai J.B., Du Y.L., Xu Y., Ruan L.M., Hu S.H. Current understanding of gut microbiota in mood disorders: An update of human studies. Front. Genet. 2019;10:98. doi: 10.3389/fgene.2019.00098. - DOI - PMC - PubMed

LinkOut - more resources