Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
Review
. 2024 Dec 5:480:136173.
doi: 10.1016/j.jhazmat.2024.136173. Epub 2024 Oct 18.

Aerobic or anaerobic? Microbial degradation of per- and polyfluoroalkyl substances: A review

Affiliations
Review

Aerobic or anaerobic? Microbial degradation of per- and polyfluoroalkyl substances: A review

Qiuqi Niu et al. J Hazard Mater. .

Abstract

The widespread utilization of per- and polyfluoroalkyl substances (PFASs) as "forever chemicals" is posing significant environmental risks and adverse effects on human health. Microbial degradation (e.g., bacteria and fungi) has been identified as a cost-effective and environmentally friendly method for PFAS degradation. However, its degradation efficiency, biotransformation pathway, and microbial mechanism vary significantly under aerobic and anaerobic conditions. This review provides a comprehensive overview of the similarities and differences in PFAS microbial degradation by bacteria and fungi under different oxygen conditions. Initially, the efficiencies and metabolites of PFAS microbial degradation were compared under aerobic and anaerobic conditions, including perfluorinated and polyfluorinated compounds. Additionally, the microbial mechanisms of PFAS microbial degradation were obtained by summarizing key degrading microbes and enzymes. Finally, the comparisons between aerobic and anaerobic conditions in PFAS microbial degradation were provided, addressing the main challenges and proposing future research directions focused on seeking combined biodegradation techniques, exploring novel microbial species capable of degrading PFAS, and confirming complete biodegradation pathways. The understanding of PFAS microbial degradation in aerobic and anaerobic environments is crucial for providing potential solutions and future research efforts in dealing with these "forever chemicals".

Keywords: Aerobic biodegradation; Anaerobic biodegradation; Metabolic pathway; Microbial mechanism; Per- and polyfluoroalkyl substances (PFASs).

PubMed Disclaimer

Conflict of interest statement

Declaration of Competing Interest The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Similar articles

Cited by

References

Publication types

LinkOut - more resources