Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2024 Dec;60(6):585-595.
doi: 10.1080/10256016.2024.2419880. Epub 2024 Oct 29.

Exploring hydrogen isotope fractionation in lipid biomolecules of freshwater algae: implications for ecological and paleoenvironmental studies

Affiliations
Free article

Exploring hydrogen isotope fractionation in lipid biomolecules of freshwater algae: implications for ecological and paleoenvironmental studies

Matthias Pilecky et al. Isotopes Environ Health Stud. 2024 Dec.
Free article

Abstract

Understanding the stable hydrogen isotope (δ2H) composition and fractionation in lipid biomolecules of primary producers, such as terrestrial and aquatic plants, is crucial for deciphering past environmental conditions, as well as applying compound-specific stable isotope analysis for the study of metabolic and ecological processes. We conducted a new tracer experiment to explore the δ2H composition of algal fatty acid biomarkers, focusing on freshwater algae, which form the base of aquatic food webs. We selected a range of algal species widely found in freshwater ecosystems and cultivated them under controlled conditions. First, we added 2H2O to ambient water as a tracer to investigate the net hydrogen isotope fractionation during algal lipid synthesis at isotopic equilibrium, which is particularly informative for paleo-geochemical studies. Then, we conducted kinetic experiments to quantify the time needed for algal fatty acids to achieve isotopic steady-state conditions in response to the change in ambient water δ2H values. Our findings revealed substantial variability in hydrogen isotope fractionation among different algal taxa and various fatty acids. Based on taxa, different fatty acids exhibited faster integration of water hydrogen than others, but they were not necessarily in the order of the biosynthetic pathway. This experiment underscores the complexity of hydrogen isotope fractionation and the requirement for controlled laboratory studies to properly apply compound-specific stable H isotope analysis techniques in ecological and paleo-environmental studies.

Keywords: Compound specific H isotope analysis; GC-IRMS; deuterium; essential fatty acids; isotope tracer; trophic ecology.

PubMed Disclaimer

LinkOut - more resources