Dapagliflozin mitigates cellular stress and inflammation through PI3K/AKT pathway modulation in cardiomyocytes, aortic endothelial cells, and stem cell-derived β cells
- PMID: 39472869
- PMCID: PMC11520772
- DOI: 10.1186/s12933-024-02481-y
Dapagliflozin mitigates cellular stress and inflammation through PI3K/AKT pathway modulation in cardiomyocytes, aortic endothelial cells, and stem cell-derived β cells
Abstract
Dapagliflozin (DAPA), a sodium-glucose cotransporter 2 (SGLT2) inhibitor, is well-recognized for its therapeutic benefits in type 2 diabetes (T2D) and cardiovascular diseases. In this comprehensive in vitro study, we investigated DAPA's effects on cardiomyocytes, aortic endothelial cells (AECs), and stem cell-derived beta cells (SC-β), focusing on its impact on hypertrophy, inflammation, and cellular stress. Our results demonstrate that DAPA effectively attenuates isoproterenol (ISO)-induced hypertrophy in cardiomyocytes, reducing cell size and improving cellular structure. Mechanistically, DAPA mitigates reactive oxygen species (ROS) production and inflammation by activating the AKT pathway, which influences downstream markers of fibrosis, hypertrophy, and inflammation. Additionally, DAPA's modulation of SGLT2, the Na+/H + exchanger 1 (NHE1), and glucose transporter (GLUT 1) type 1 highlights its critical role in maintaining cellular ion balance and glucose metabolism, providing insights into its cardioprotective mechanisms. In aortic endothelial cells (AECs), DAPA exhibited notable anti-inflammatory properties by restoring AKT and phosphoinositide 3-kinase (PI3K) expression, enhancing mitogen-activated protein kinase (MAPK) activation, and downregulating inflammatory cytokines at both the gene and protein levels. Furthermore, DAPA alleviated tumor necrosis factor (TNFα)-induced inflammation and stress responses while enhancing endothelial nitric oxide synthase (eNOS) expression, suggesting its potential to preserve vascular function and improve endothelial health. Investigating SC-β cells, we found that DAPA enhances insulin functionality without altering cell identity, indicating potential benefits for diabetes management. DAPA also upregulated MAFA, PI3K, and NRF2 expression, positively influencing β-cell function and stress response. Additionally, it attenuated NLRP3 activation in inflammation and reduced NHE1 and glucose-regulated protein GRP78 expression, offering novel insights into its anti-inflammatory and stress-modulating effects. Overall, our findings elucidate the multifaceted therapeutic potential of DAPA across various cellular models, emphasizing its role in mitigating hypertrophy, inflammation, and cellular stress through the activation of the AKT pathway and other signaling cascades. These mechanisms may not only contribute to enhanced cardiac and endothelial function but also underscore DAPA's potential to address metabolic dysregulation in T2D.
Keywords: AKT signaling; Beta cells; Cardiomyocyte; Dapagliflozin; Endothelial cells; Inflammation; Sodium-glucose cotransporter.
Plain language summary
1. DAPA effectively attenuates ISO-induced cardiomyocyte hypertrophy by reducing cell size and improving cellular structure. 2. DAPA exhibits anti-inflammatory properties in AECs by restoring AKT and PI3K expression, upregulating MAPK activation, and downregulating inflammatory gene expression. 3. DAPA enhances insulin functionality in SC-β cells without altering cell identity, suggesting potential benefits in diabetes management. 4. DAPA’s modulation of SGLT2, NHE1, and GLUT1 expression in cardiomyocytes underscores its role in cellular ion balance and glucose metabolism, contributing to its cardioprotective mechanisms. 5. DAPA alleviates TNFα-induced inflammation and stress responses in AECs, while enhancing eNOS expression, indicating its potential to preserve vascular function. 6. DAPA attenuates NLRP3 activation and reduces NHE1 and GRP78 expression in SC-β cells, offering novel insights into its anti-inflammatory and stress-modulating effects.
© 2024. The Author(s).
Conflict of interest statement
The authors declare no competing interests.
Figures
References
-
- Alhusaini AM, Alghibiwi HK, Sarawi WS, Alsaab JS, Alshehri SM, Alqahtani QH, Alshanwani AR, Aljassas EA, Alsultan EN, Hasan IH. Resveratrol-based liposomes improve cardiac remodeling induced by isoproterenol partially by modulating MEF2, cytochrome C and S100A1 expression. Dose Response. 2024;22:15593258241247980. 10.1177/15593258241247980. - PMC - PubMed
-
- Parreira RC, Gómez-Mendoza DP, de Jesus ICG, Lemos RP, Santos AK, Rezende CP, Figueiredo HCP, Pinto MCX, Kjeldsen F, Guatimosim S, et al. Cardiomyocyte proteome remodeling due to isoproterenol-induced cardiac hypertrophy during the compensated phase. Proteom Clin Appl. 2020;14:e2000017. 10.1002/prca.202000017. - PubMed
-
- Zinman B, Lachin JM, Inzucchi SE. Empagliflozin, Cardiovascular outcomes, and mortality in type 2 diabetes. N Engl J Med. 2016;374:1094. 10.1056/NEJMc1600827. - PubMed
-
- Fitchett D, Zinman B, Wanner C, Lachin JM, Hantel S, Salsali A, Johansen OE, Woerle HJ, Broedl UC, Inzucchi SE. Heart failure outcomes with empagliflozin in patients with type 2 diabetes at high cardiovascular risk: results of the EMPA-REG OUTCOME® trial. Eur Heart J. 2016;37:1526–34. 10.1093/eurheartj/ehv728. - PMC - PubMed
Publication types
MeSH terms
Substances
Grants and funding
LinkOut - more resources
Full Text Sources
Miscellaneous
